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Abstract 

Home security is one of the major demand of the modern home, most cheaper home security 

systems are not intelligent to understand and process visual information in an image, detect 

different threats and alert if they found one.  This project implements a cheaper solution for 

home security system that uses power of deep learning and object detection inside a raspberry pi 

that process and understand visual information captured using pi camera and alert user as it 

detects any threat. This project currently detects four categories (person, monkey, cat and dog) 

but can be extended to detect more categories. This project can also be extended from home 

security system to other surveillance task like detecting hunters in forest, detecting poisonous 

snakes, detecting threats in country border etc. by re-training object detection model with data of 

desired categories. A more unified and precise surveillance system can be created by using more 

data and compute. 

Keywords:  surveillance system, object detection, computer vision application 
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1.  INTRODUCTION 

The use of home surveillance system is necessary for modern houses, CCTV cameras are placed 

on every street, shops and societies but they are not intelligent that they can detect and alert us 

from threats as they appear, which sometime can save us from big trouble. This project, tries to 

implement an intelligent security system by re-using hardware of installed surveillance system 

like IP camera which will save cost or using a raspberry pi and a camera. This system is capable 

of detecting and alerting threats if it found one, it even record environment video at that instance 

which can be used for further analysis. In India there are a lots of places where monkey theft 

occurs a lot they silently enter the house and steal away things, sometimes they even steal or 

destroy some precious items, not only monkeys are thieves, cats are also expert in this task. This 

project extends this idea to a person and dog as well. Further, we can also extend it not only for 

home surveillance but to some specific task like detecting snakes that accidentally enters the 

house or cattle sheds which can harm the residents, protect wildlife from hunters by alerting the 

authorities as it detects them, alerting people about the presence of leopard or tiger in the locality 

there are a lot of cases that happens in our area a lot where people get attacked by them, and 

much more endless possibilities. To make system understand, detect and act on environment 

object detection is used which is part of computer vision. It let computers to classify and localize 

objects in an image. Using it we gave computers the power to locate objects in an environment. 

Object detection can be done based on classical methods of hand extracted features from images 

and classify them or using deep learning techniques which automatically learns features from 

images. These deep learning based methods outperforms classical algorithms by large margin. 

Currently object detection is mostly done using deep learning techniques and is one of the most 

active area of research. The working demo of the project detects threats using digital image 
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provided by a camera and alerts user through the mail with image of detected threat. As object 

get detected the video recorder gets activated that records short video of that instance for later 

watch and analysis. The demo can detect four classes monkeys, cats, dogs and person. For 

optimization, the project uses multiple threads that enable the program to run different threads 

parallelly and take advantage of full compute resources. Email and video recorder runs on their 

separate thread so they do not interfere with the main thread which does detections, this results 

the boost in inference time of the model. The object detection models were implemented using 

TensorFlow’s object detection API which contains lots of pre-trained models. For comparing and 

selecting a model based on use case, three best models: SSDMobileNetV2, SSDMobileNetV2 

FPNLite and EfficientNet D0 were selected based on their inference time. The inference time of 

these models is important since we want realtime object detection. These models were trained for 

10000 steps in data collected from internet and open image dataset (OID) and compared. From 

comparison of these models we understand the relation between model’s inference time and its 

accuracy are inversely proportional, more the model is accurate more it takes to infer.  

In the next section we have reviewed all points which are necessary to understand the base of 

project from object detection, techniques and metrics to measure performance of models. Section 

3 devotes to all methodology and setups along with all comparisons between models. Section 4 

analyses these comparisons and deduce result and make an analysis of the further research 

directions.  
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2.  REVIEW OF LITERATURE 

For understanding content of image in security camera we have to use computer vision 

techniques that let machines to interpret contents of digital images feed through camera. This 

project uses computer vision techniques to detect threats in images. 

2.1.  Computer Vision 

Computer vision is a field of artificial intelligence that trains computers to interpret and 

understand the visual world. Using digital images from cameras and videos we try to create 

machines with vision capabilities that can detect, localize, classify object in the environment and 

can react based on the information they gather through their vision. 

Based on the task performed with computer vision, computer vision can be classified into three 

levels: 

Low-Level vision. 

Vision tasks that include basic image manipulation came under this category. Example: 

resizing the image, converting to grayscale, changing exposure, finding edges, finding image 

gradients etc. These tasks more emphasize on pixel manipulation in images. 

Mid-Level Vision. 

Vision tasks that include connecting different images that could be used to map the 

environment came under this category. Example: panorama stitching, Multi-view stereo, 

Rangefinding, optical flow etc. These tasks emphasize on connecting images to form real-world 

scenes. 
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 High-Level vision. 

Vision task that includes extracting and features from images and understanding 

semantics. Example: image classification, object detection, semantic segmentation, image to 3D 

map etc. These tasks emphasize on extracting and understanding the content of images. 

This project needed to detect threats like monkeys, person, dogs, snakes etc. from images and 

alert user, this task came under the category of high-level vision in machine has to understand 

semantic of image i.e. understand contents of image. Object detection is one of the high level 

vision technique that is base of this project. 

2.2.  Object Detection 

Object Detection is high level computer vision task that deals with detecting instances of visual 

objects in digital images. It classifies and localize objects presented in images. It helps computer 

to answer the question of What object is where? 

Object detection is basis of many task in computer vision like object tracking, instance 

segmentation etc. From past two decades the object detection research is flourishing and 

improvement process still continues. The major impact on researches were seen after re-

emergence of deep learning techniques in computer vision from then this field is progressing 

exponentially. 

Object detection techniques are now widely used in many real-world applications like video 

surveillance, self-driving cars, robot vision, augmented reality etc. 

Evolution of Object Detection. 

The past two decades were boon for field of object detection thanks to all dedicated 

computer vision scientist. So without understanding the evolution of object detection it would be 
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difficult to understand how this field reached the current milestone. Evolution of object detection 

happens in phases, we can divide these phases as 

• Traditional object detection 

• Deep Learning based object detection 

 

Traditional Object detection. 

Deep learning phase has seen exponential growth in past decade and so object detection 

too, but traditional methods are one that led us to reach the position in which we are now. Most 

of the early object detection algorithms were based on handcrafted features due to lack of 

effective image representation at that time and speed hacks due to lack of computational 

resources. 
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Voila Jones Detectors. 

In 2001 Paul Viola and Michael Jones achieved real-time detection of human faces in 

digital images for the first time which ran on a 700MHz Pentium III CPU. They used 

combination of simple features and boosted classifiers which run on whole image using sliding 

window approach. For achieving real-time detection speed it uses idea of integral image that 

saves lots of computation while window slide across image. The features were very simple called 

Haar wavelets, which were created randomly by taking average of pixels in one box and subtract 

with average of other box in example faces. Using this a huge set of random features pool 

(around 180k-dimensions) were created. Then using Adaboost algorithm a small set of features 

was selected which are helpful for face detection. These feature sets were easy to compute, for 

more optimization in calculations integral image technique was used. Integral image is 

computation speed up method which makes computational complexity of each window in voila 

jones detector independent of its window size. 

HOG Detector. 

HOG stands for histogram of oriented gradients proposed in 2005 by N. Dalal and B. 

Triggs. It is considered as improvement of SIFT (Scale invariant feature transform) which is a 

feature detector and descriptor. The part which is different from SIFT is normalization of 

gradients using local window using this balances feature invariance. the HOG descriptor also 

uses overlapping local contrast normalization for improving accuracy. These HOG features then 

trained using SVM to detect different classes of objects. The primarily motivation of HOG 

detection is pedestrian detection but can be used to detect different objects. To detect objects of 

different sizes it rescales input image for multiple times while keeping size of window 

unchanged. 
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DPM. 

Deformable parts model (DPM) was originally proposed by P. Felzenszwalb in 2008 as 

an extension of the HOG detector. It combines knowledge of physics and mathematics therefore 

often called physics based model. Deformable objects are geometric objects whose shape can 

change overtime. DPM can deal with change in dynamics of objects an example of which is in 

pedestrian detection a pedestrian can have different poses. Instead of running HOG in whole 

image, we have HOG features of different parts of body. The result from all individual parts are 

merged to get output. DPM are more robust to noise than HOG. 

Many of new object detection techniques are still deeply influenced by its valuable 

insights from P. Felzenszwalb, e.g., mixture, hard negative mining, bounding box regression, etc. 

In 2010 P. Felzenszwalb and R. Girshick were awarded the lifetime achievement by PASCAL 

VOC. 

Deep Learning based object detection. 

These handcrafted features models performance become saturated and very little 

improvements were happening in this field between 2010 – 2012. These little improvements 

were based on previous models which shows very insignificant progress. In 2012 after rebirth of 

convolutional network a new blood pumped in the field of object detection, which also led to the 

birth of modern object detection. Convolutional deep learning based object detection can further 

be divided into two groups 

• Two stage detector 

• Single stage detector 

Two stage detector detects objects in two phases, in first phase they detect regions where 

objects are present and in second stage they detect bounding boxes and classes of objects in 
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image. While in one stage detectors combine both these phase into one, they detect and classify 

objects in one go. 

Two stage detectors. 

• R-CNN 

RCNN uses selective search algorithm for generating region proposals by merging 

similar pixels into regions. The regions got from this step were warped, resized and pre-

processed then passed into a CNN which produces feature vectors these feature vectors are then 

used for classification and bounding box regression which result bounding boxes of objects and 

their classes. RCNN yields a significant performance boost on VOC07 dataset, with a large 

improvement of mean Average Precision (mAP) from 33.7% in DPM-v5 to 58.5%.This 

algorithm was fast with respect to sliding window approach and then passing each window to 

CNN but it was still quite slow to be used in realtime object detection. 

• Fast RCNN 

In 2015, R. Girshick proposed Fast RCNN detector which is further improvement of 

RCNN. Fast RCNN also uses selective search to find region proposals but it redefined 

architecture of RCNN to make it fast. In RCNN first regions were proposed then these regions 

were passed to a CNN which lead to multiple pass of images to CNN which is costly operation. 

Fast RCNN improves this process of multiple passes to CNN which makes it much faster than 

RCNN. In Fast RCNN whole image is passed through CNN and regions proposals are extracted 

from image. These proposals then then pooled directly on feature map by using ROI (region of 

interest) pooling. These pooled vectors are then passed through fully connected layer for 

classification and bounding box regression. On VOC07 dataset, Fast RCNN increased the mAP 

from 58.5% in RCNN to 70.0% while having detection speed over 200 times faster than R-CNN. 
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This algorithm saves multiple passes to CNN but still there is bottleneck of finding region 

proposals which limit speed of algorithm. This was solved in later version of RCNN called 

Faster RCNN 

 • Faster RCNN 

In 2015 shortly after Fast RCNN, S. Ren et al. proposed Faster RCNN detector. Faster 

RCNN was the first end-to-end, and the first near-realtime deep learning detector. Faster RCNN 

unified region proposal and detection network by introducing region proposal networks that 

enables cost free region proposals. Region proposal use anchor boxes in image and predicts if 

feature map contains foreground or background. This RPN network is part of training network 

whereas in previous RCNN networks they use selective search techniques for this task which is 

not part of network this decrease training and inference time of network. On VOC07 dataset, 

Faster RCNN increased the mAP from 70.0% in RCNN to 73.2% and COCO mAP@.5 is 42.7%. 

One stage detectors. 

• YOLO 

YOLO stands for ‘you only look once’ it is the first one stage object detector proposed by 

R. Joseph et al. in 2015. YOLO is popular object detection network because of its speed. A fast 

and enhanced version of YOLO can run at 155fps with VOC07 map = 63.4%. These networks 

are not the accurate one they suffer from drop of the localization accuracy compared with two-

stage detectors, especially for some small objects but due to their speed they are used in many 

real world applications. R. Joseph has made series of improvements in YOLO and released 

YOLOv2 and YOLOv3. For detecting objects of different sizes YOLOv3 introduced detection in 

multiple scales of image. Currently YOLO is in active development phase the latest version 

YOLOv4 and YOLOv5 have been released in 2020 with major improvements on speed and 
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accuracy. This network divides image into certain regions and predicts bounding boxes and 

classification score for each region by applying a single convolutional network in image at once. 

YOLO networks are fully convolutional networks the final predictions of network are also in 

form of a feature map rather than a dense layer. It’s like implementing sliding window using 

convolutional network. 

• SSD 

SSD was proposed by W. Liu et al. in 2015, it stands for single shot detection and second 

one stage network using deep learning. SSD used multi-reference and multi-resolution which 

improve detection accuracy for small objects. SSD have good combination of detection speed 

and accuracy with VOC07 mAP = 76.8% and COCO mAP@.5=46.5% and can run at 59fps. 

SSD detects objects of different scales on different layers of network while previous networks 

only run detection on top layers. 

2.3.  Object Detection Metrics 

These metrics let us to measure performance and effectiveness of different models, and helps to 

compare them. Previously there was no standardize method to measure any objet detection 

models, different models use different metrics to measure their performance like miss rate vs 

false positive rate per window (FPPW) or false positive per image (FPPI) used in Caltech 

pedestrian detection. In recent years the most frequently used algorithm for object detection is 

Average Precision (AP) which was introduced in VOC2007. It is defined as average detection 

precision under different recalls and measured for every specific category. To compare 

performance over all categories, mean AP (mAP) average of AP for all categories is taken. This 

mAP score is taken as final measure to compare different object detection networks.  
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To measure accuracy of object localization the Intersection over Union (IoU) is used. It measures 

how much predicted bounding box overlaps with ground truth box. It is ratio of area of overlap 

of predicted box with ground truth box to the total area (union) of predicted box and ground box. 

𝐼𝑂𝑈 =
𝑃⋂𝐺

𝑃⋃𝐺
 

𝑤ℎ𝑒𝑟𝑒 𝑃 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 

𝑎𝑛𝑑 𝐺 = 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥   

 

Based on some threshold value (generally 0.5) we can categorize box as false positive or 

true positive. 

e    true+v

else:

ve    false+

hreshold:if IOU < T

 

The 0.5-IoU based mAP has then become the widely used metric for object detection 

problems for years. To calculate mAP we need to calculate two things precision and recall for 

every class and plot them in a graph with varying thresholds. The area under precision-recall 

curve gives AP for that class. To find mean average precision (mAP) we take average of AP 

across all classes. 

2.4.  Transfer Learning 

Transfer learning is technique of training a network by using and fine-tuning a pre-trained 

model. This method of training requires less data and less computation power since most of the 

features were previously learned by network. This helps to train network if data and computation 

are limit with good accuracy. It is called transfer learning since previous knowledge of network 

about a task was transferred as knowledge for new task. This is same as human learns things, we 
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use some previous experience and learnings into new tasks and fine-tune them which helps us to 

learn faster. 

In analogy of deep learning model we transfer weights of previous training as starting 

point for new training and fine-tuning our new model. 

2.5.  TensorFlow Object Detection API 

The TensorFlow Object Detection API is an open source framework built on top of TensorFlow 

that makes it easy to construct, train and deploy object detection models. Google use this 

codebase to be for their computer vision needs. It let us to create accurate machine learning 

models capable of localizing and identifying multiple objects in a single image.  

This API supports both TensorFlow 1 and TensorFlow 2. Majority of modules are 

compatible with both versions. 

TensorFlow object detection API provide us pre-trained object detection models that can 

be used to train custom models with transfer learning. It also provides cutting edge new research 

object detection models. 

This project also uses this API because it provides wide ranges of object detection models 

as per need and pre-trained weights for transfer learning which require less computation time and 

data for training as compared to training model from scratch. 
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3.  REPORT ON THE PRESENT INVESTIGATION 

3.1.  Methodology 

The project development was divided into phases that help in structuring the project and 

increases productivity. 

Planning and structuring the idea 

The first step for any project is crucial, here I planned all strategies and approaches to 

deal with the idea of the project. Materials related to such were searched and collected from the 

internet with information regarding best tools, practices, research papers and lectures necessary 

to learn before creating project. Learning tasks were prepared to efficiently gain the required 

knowledge for the project. 

Acquiring Knowledge 

All collected resources were skimmed through in the first step and useful resources are 

selected from all which can be referred later to acquire knowledge of my problem domain. 

Knowledge is acquired on computer vision from the classical era to the modern era with more 

emphasis on object detection. Resources include lecture videos and texts. 

Setting up project environment  

Concurrently with phase two, the project environment was set up to start the development 

of the project and implementing the idea. All tools which are needed were setup and configured 

on the machine. I used my system for prototyping which was ideal for prototyping and testing 

the idea later I use free cloud services with GPU provided by Google and Kaggle for the high 

intensive task and at last, the project has to be ported to raspberry pi, all platforms were set up 

for further development. 



object detection in home surveillance 16 

Planning development phase 

Plan for the development of the project was created in this phase which provides a more 

efficient workflow and management of the project became easier. For this Google Tasks 

application was used. The project was divided into stages and the first five stages were the heart 

of the project which includes detection of threats from images and last five tasks were 

functionalities required for a security camera. 

Project development phase 

According to the plan defined in previous phase work on the project was started. The first 

step was to prototype the first five stages of the plan which include detection of threats. Data was 

collected for the training of model and a working prototype was created in local machine to train 

and test model. After a successful attempt, the code was shifted to Google Colab and Kaggle 

kernels to train. 

Data Collection. 

Data collection is a crucial part of training a good model. The data which I needed was 

location annotated images of threats which I want to detect using a camera. For this task images 

were scraped from the internet. These images then were hand-annotated by using an image 

labelling software called labelimg.  

There were around 1000 images to annotate containing images of threats. Since later 

more threats categories were inserted it became difficult to hand annotate these images and also 

we need plenty more images per category to train so for that I used open image dataset which 

contains hand-annotated images of various categories. To download data of selected classes, a 

script was used that downloaded around 2000 images per category for training and around 400 

images for testing from open images dataset.  
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Training and testing models. 

After data was collected the next step was to load the data in the project and use that 

loaded data for training and testing the model. The models were trained on free cloud GPU 

provided by Google and Kaggle in Google Colab and Kaggle Kernels respectively.  

Different deep learning models were trained in this phase and their progress was tracked. 

The models which were trained were selected on the basis their mAP score and time taken to 

inference an image. Then using transfer learning on those models they were trained. Transfer 

learning was used because of my limit of data and computation power. 

Comparing and selecting model. 

Since I will be using a raspberry pi later for production which is low computational 

device hence the model selection is very crucial for a better experience. Out of all trained 

models, a less computation model with mAP score greater than 50 has to be selected so to give 

better accuracy since all models scores above 50 the model with less inference time was selected 

which can be used with raspberry pi for realtime detection. 

Combining detection in live feed. 

Scripts for detection of threats on a live video feed from the camera were created. This 

script creates bounding boxes around threat when detected in feed along with confidence score 

and class of threat. This script was tested on the local machine with i3 6th gen CPU, the model 

provides performance around 10 FPS. 

After successful implementation of the first stage of the project, security features were 

implemented the major ones were alerting person about the detection of threat and recording that 

instance in form of video for later watch. 
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Implementing Features. 

For sending alerts I used emails as it is easy to set up and send notifications and we do 

not need to pay for any subscription. The program also restricts to send email continuously as it 

can spam inbox and block account too. In an email, an image of detected threat is also sent so 

that the user can confirm and check if it’s dangerous or not. A user can also block detections 

emails for some specific classes of threats.  

The recording feature starts recording video when any threat appears on video frame to 

the time it disappears from the frame. It also handles recording when multiple threats appear in 

the same frame. 

Packing and Testing the code. 

In this step, all project files are combined into a package with configuration files for 

script changing parameters easily. Then the whole project again undergoes testing once again 

which ensures all merged modules are working as expected. 

Optimization with threading 

The whole project is optimized by using the concept of multithreading. Modules which 

are independent to each other are divided into different threads so they can run concurrently this 

take advantage of multiple cores of CPU and performance increases by a large factor. Detection 

of threats, sending email alerts and recording videos are on separate threads which increases 

performance. 

Porting to Devices 

Finally, the whole project is ported on devices (surveillance system, raspberry pi) and 

inference performance are tested on it. For capturing live feed pi camera was used in raspberry pi 
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and IPCamera in surveillance system. Some optimizations were again made while reading input 

from the camera by introducing separate thread for this task. Final testing was again done and 

check for all modules working well combined with multithreading. 

3.2.  Experimental Setup 

1. Development Tools 

Python 

Python is an interpreted, high-level and general-purpose programming language. Created 

by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code 

readability with its notable use of significant whitespace. Its language constructs and object-

oriented approach aim to help programmers write clear, logical code for small and large-scale 

projects. 

Python is dynamically typed and garbage-collected. It supports multiple programming 

paradigms, including structured, object-oriented, and functional programming. Python is often 

described as a "batteries included" language due to its comprehensive standard library. 

Python interpreters are available for many operating systems. A global community of 

programmers develops and maintains CPython, a free and open-source. A non-profit 

organization, the Python Software Foundation, manages and directs resources for Python and 

CPython development. 

Python is most widely used language when it comes to machine learning due to wide 

numbers of scientific computation and machine learning frameworks.  It is widely used language 

in machine learning research. 
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NumPy 

NumPy is a library for the Python programming language, adding support for large, 

multi-dimensional arrays and matrices, along with a large collection of high-level mathematical 

functions to operate on these arrays. In 2005, Travis Oliphant created NumPy. It is open-source 

software and has many contributors. 

Numpy provide optimized high dimensions matrices and operations it is supported by most of 

machine learning frameworks. 

TensorFlow 

TensorFlow is a free and open-source software library for dataflow and differentiable 

programming across a range of tasks. It is a symbolic math library, and is also used for machine 

learning applications such as neural networks. It is used for both research and production and 

backbone for lot of machine learning applications 

Dataflow programming is a programming paradigm that models a program as a directed 

graph of the data flowing between operations, thus implementing dataflow principles and 

architecture. 

Differentiable programming is a programming paradigm in which a numeric computer 

program can be differentiated throughout via automatic differentiation. This allows for gradient 

based optimization of parameters in the program, often via gradient descent. Differentiable 

programming has found use in a wide variety of areas, particularly scientific computing and 

artificial intelligence. 

TensorFlow was developed by the Google Brain team for internal Google use. It was 

released under the Apache License 2.0 on November 9, 2015. 
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OpenCV 

OpenCV (Open Source Computer Vision Library) is an open source computer vision and 

machine learning software library. OpenCV was built to provide a common infrastructure for 

computer vision applications and to accelerate the use of machine perception in the commercial 

products. Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and 

modify the code. 

It has C++, Python, Java and MATLAB interfaces and supports Windows, Linux, 

Android and Mac OS. OpenCV leans mostly towards real-time vision applications and takes 

advantage of MMX and SSE instructions when available. A full-featured CUDA and OpenCL 

interfaces are being actively developed right now. There are over 500 algorithms and about 10 

times as many functions that compose or support those algorithms. OpenCV is written natively 

in C++ and has a template interface that works seamlessly with STL containers. 

2. Machines and Platforms 

For this project different sets of machines and platforms are used to prototype, train and 

deploying. For prototyping and testing my personal laptop was used, since for training a model 

we need a good GPU without it would be very time consuming. So for training free GPU from 

Google and Kaggle are very helpful which helps to train model under 4 hours. For deployment 

raspberry pi was chosen since its size is small and is ideal for creating a security camera. The 

operating system of these devices vary between Windows and Linux. My personal laptop uses 

Windows operating system while all other machines run a flavor of Linux. 
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ACER E-15 

This is my personal laptop which runs windows operating system and contains a low spec 

GPU which is enough for prototyping and training for less iterations also it is always accessible 

to me. 

SPECS: 

• RAM: 12GB 

• Memory: SATA SSD 256GB 

• GPU: NVIDIA GEFORCE 940MX 

i. Transistor Count: 1870 Million 

ii. Memory Type: GDDR5, DDR3 

iii. Memory bus width: 64 Bit 

iv. Max. Amount of Memory: 4GB 

v. CUDA cores: 384 

Google Colab 

Google Colaboratory, or Colab, allows us to write and execute Python in a web browser, 

without any extra configurations. This is an interactive notebook based environment which are 

running on virtual machines provided by Google Research. 

Colab is a hosted Jupyter notebook service that requires no setup to use, while providing 

free access to computing resources including GPUs and TPUs. 

Colab notebooks are stored in Google Drive, or can be loaded from GitHub. Colab is able 

to provide free resources in part by having dynamic usage limits that sometimes fluctuate, and by 

not providing guaranteed or unlimited resources. This means that overall usage limits as well as 

idle timeout periods, maximum VM lifetime, GPU types available, and other factors vary over 
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time. Colab does not publish these limits, in part because they can (and sometimes do) vary 

quickly. 

SPECS:  

• RAM: 12GB 

• Memory: 34GB + Google Drive memory 

• GPU: NVIDIA TESLA K80 

i. Transistor Count: 7,100 million 

ii. Memory Type: GDDR5 

iii. Memory bus width: 384 Bit 

iv. Max. Amount of Memory: 12GB 

v. CUDA cores: 4992 

Kaggle Kernels 

Kaggle Kernels are cloud computational environment that can be accessed via web 

browser that enables reproducible and collaborative analysis without any extra configurations. 

Kaggle supports Python and R language. Kaggle kernels are also hosted Jupyter notebook 

service which provide free GPU and TPU for computation. 

SPECS: 

• RAM: 13GB 

• Memory: 34GB + Google Drive memory 

• GPU: NVIDIA Tesla P100 

i. Transistor Count: 15,300 million 

ii. Memory Type: HBM2 

iii. Memory bus width: 4096 Bit 
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iv. Max. Amount of Memory: 16 GB 

v. CUDA cores: 3584 

The P100 provides 1.6x more GFLOPs and stacks 3x the memory bandwidth of the K80.  

Raspberry PI 

The Raspberry Pi is a series of small single-board computers comparable to size of a 

credit card. It contains all the components of a computer and it works as a computer. These were 

developed in the United Kingdom by the Raspberry Pi Foundation. They are used by hobbyist 

for creating various projects. As of now Raspberry Pi has model 4 in market with upto 8GB of 

RAM in its higher configuration. 

There are lot more versions of Pi in market, for this project I am using Raspberry Pi 3B 

with inbuilt wireless LAN and Bluetooth.  

SPECS: 

• RAM: 1GB 

• Memory: size of memory card inserted (32GB class 10) 

• CPU: Quad Core 1.2GHz 

• Architecture: 64bit 

• BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board 

• 100 Base Ethernet 
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3.3.  Comparison of object detection models  

For this project we need to a select a model that has low inference time and greater mAP value 

for accurate realtime object detection, on this note three models (SSDMobileNetV2, 

SSDMobileNetV2 FPNLite and EfficientNet D0) were selected as per the information from 

object detection API, these models have low inference time but in cost of accuracy. These models 

are used for realtime object detection based on the devices which will be used for inferencing, if 

device has low compute power we have to use model with low inference time but for more 

compute powered devices we can deal with more complex model for more accuracy. In this 

section we will compare these three models based on inference time, mAP score for measuring 

accuracy and training time. As per the results of comparison we can conclude better about, which 

model is suitable which device. The below results are based on the training of models for 10000 

epochs. 

Comparison of object detection metrics 

In this part we compare Average Precision (AP), Average Recall (AR) and Mean 

Average Precision (mAP) for models using thresholds 0.50:0.95, 0.50 and 0.75. Here we also 

compare these metrics with respect to object size (small, medium and large). 

Comparison of Average Precision and Average Recall (AP and AR) 
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From above graphs we observe that EfficientNet D0 is outperforming SSDMobileNet 

FPNLite and SSDMobileNetV2 in terms of AP and AR. High precision relates to the low false 

positive rate and High recall relates to low false negative rate. For small objects all models are 

struggling hard, EfficientNet has some significant value in average recall. For medium size 

objects EfficientNet is in lead with large margin followed by SSDFPNLite, margin between 

SSDMobileNet and SSDFPNLite is low. For larger objects all models are performing well, but 

EfficientNet is in clear lead while SSDMobileNetV2 and SSDFPNLite are very close. 

Comparison of mAP metrics. 
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In terms of mAP scores since EfficientNet is leading in terms of AP and AR therefore it 

has higher mAP too. Followed by SSDFPNLite then SSDMobileNet both of them are very close 

in terms mAP score but for medium size objects SSDMobileNet is struggling. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡 𝐵0 >  𝑆𝑆𝐷𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2 𝐹𝑃𝑁𝐿𝑖𝑡𝑒 >  𝑆𝑆𝐷𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2 

Comparison of Inference time 

  
SSDMobileNet is fastest and can process a single image in 1.4 seconds while 

EfficientNet takes more than 3 times of that to process an image. So SSDMobileNet is the choice 

if we need better response time in low computing devices. In an Intel i3 CPU SSDMobileNet on 

average provides 10 FPS while SSDFPNLite provides 8 FPS and EfficientNet is way behind at 2 

FPS. 

Comparison in time taken to train models 

Here we compared the time required to finish training by a model. We have taken 10000 

epochs as standard for comparing training time of a model. 
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From above graph we can clearly see that SSDMobileNet is fastest to train which take 

about 1 hour 16 min to train followed by SSDFPNLite with 1 hours 50 min and EfficientNet 

with 3 hours 40 min. This comparison can be neglected while deriving conclusions, since it does 

not matter because we do not need to train model every time, we can train once and run infinite. 

The thing matter is how well model performs in inference device.  
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4.  RESULTS AND DISCUSSIONS 

4.1.  Results 

After all the comparison between models we have to decide which model to be used for final 

work. From all the comparisons we can conclude that there is no perfect model which we can 

use, there is tradeoff between inference time and model accuracy. The more accurate model takes 

more time to infer. The below graph is conclusion of all the comparisons we made.

 

Since there is tradeoff between accuracy and inference time so our choice of model now 

depends on inference device we choose. The one property we want most is realtime object 

detection so in some cases we might have to neglect high accuracy. For low compute power 

devices like raspberry pi 3 or older we can use SSDMobileNetV2 as it runs faster and gives 

decent has decent mAP score, it will not be highly accurate but can compete with other in terms 

of detecting large objects. If we define use case of camera to be static and its angle of coverage 

(describes the angle range that a camera lens can image) is low, then most of the objects are big 

enough and can be detected by model easily. If camera has wide line of coverage then 
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SSDMobileNet can fail or detections might be wrong, to prevent this we can use SSDFPNLite 

which is much more accurate than SSDMobileNet in terms of detecting medium sized object but 

it can cause drop in FPS of realtime detection by some amount but it would not be more since 

from above chart we can infer the difference is very little. If FPS is too low for our use case, then 

we can use more compute power device like latest raspberry pi model 4. We can also use IP 

camera for surveillance which will stream feed inside network and can be read using rtsp URL 

and feed to object detection model, this case is ideal since we are re-using hardware which will 

save cost. The model can be installed in surveillance device which has more compute power and 

we can run more complex models too. EfficientNet will be useful with very wide coverage range 

camera since it is good in detecting medium size objects. Very distant objects are hard to pick 

correctly by these models since they appear small.  

4.2.  Future Directions 

As further research in object detection advances new and better algorithms will be accessible 

which will improve results of threat detection too. In future TensorFlow lite support for all sorts 

of models in object detection API will make detections possible in low compute devices. The 

future research in lightweight object detection will open a doorway for low power devices to 

become more accurate and fast which concurrently improve the speed and accuracy of 

detections, this also decreases cost since cheaper low compute device can perform detections 

using these models. Also the further advancement of research in abstract learning, training a 

model will be much easier as few training data can train a good object detection model. The 

project mostly suffers from detection of small objects, as further research advances around this 

context it opens doors for some potential applications like counting the population of wild 

animals with remote sensing, detecting anomalies from long distance and surveillance of military 
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targets etc. Further we can implement image to context which will detects threat and analyses the 

action performed by it and alerts with the action performed by threat. The further advancement in 

object detection will lead to betterment of intelligent surveillance systems in terms of 

performance, speed and accuracy. 
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5.  SUMMARY AND CONCLUSIONS  

The aim of this work is to create an intelligent security system using computer vision, this 

was achieved by using object detection algorithms which detect threats in images taken from 

camera and alerts user when found one. There are lots of object detection methods out there from 

traditional object detection using manually extracted features to deep learning based object 

detection which automatically detects features from images using convolutional neural networks. 

We use single shot detectors (SSD) which are one stage detector, it enables us to use object 

detection in real-time while providing reasonable accuracy. Previous two stage detectors are 

accurate but not ideal for real-time detection and traditional object detection techniques are not 

accurate enough although they are fast because of optimization techniques applied at that time 

for old systems, they also could not bear changing lightning conditions. There are lots of version 

of SSD’s but we are interested on those which can provide good FPS in real-time object 

detection, for this reason three models were chosen based on their inference time record 

presented in TensorFlow object detection API docs. These models were trained on dataset 

collected from internet and labeled using LabelImg for 10000 epochs and later tested with 

evaluation data to find model performance. The performance data of models is then used for 

comparison of models.  

These models were compared on the basis of inference time and accuracy they provide. 

The main priority feature for comparison was inference time, because we can tackle with some 

drop in accuracy but it will be hard to run object detection in real-time if inference time was 

high. From comparisons we find SSDMobileNetV2 is fastest though the problem with this model 

is it is struggling in terms of detecting smaller and medium sized objects. Although all models 

we compared struggled to detect small objects but it is struggling with medium sized objects too. 
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It might not be problem with some security system requirements, but it might be poor while 

detecting some small threats like snakes. It might also fail to detect if camera has wide line of 

coverage which zooms out the perspective of environment. In terms of accuracy EfficientNet D0 

is leading with large margin but it is resource intensive and takes about 5 secs to infer providing 

1-2 fps in real-time detection in an Intel i3 CPU. The third model SSDMobileNet FPNLite is 

moderate one it provides around 8 FPS which is little less than SSDMobileNetV2 but it provides 

greater accuracy while detecting medium size objects. 

The choice of model to use boils down to the choice of application and choice of device 

which will be used for inferencing. If we need to detect small objects like snakes or detect distant 

objects, then we have to choose EfficientNet or SSDFPNLite and device should be powerful 

enough to maintain around 1 FPS for better results and the choice depends on amount of 

accuracy we need for the task. In terms of security we can ask how dangerous is threat which we 

need to detect? For devices like raspberry pi, we are bounded with compute limit so 

SSDMobileNet is the choice. This model is also great if we want intelligent security setup for 

cheap. 

This work can be later evolved as evolution in object detection continues and new 

lightweight accurate models come to existence. The detections further can be improved by using 

more data to train until any abstract deep learning method come to existence. As object detection 

techniques and research around detection of small objects continues to evolve, then this will 

positively impact some intense security tasks like detecting military targets.  
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