
object detection in home surveillance 1

Application of Object Detection for Creating Intelligent Home

Surveillance System

Final Year Project

Tarun Bisht, M.Sc. Computer Science

Department of Computer Science, DSB Campus

Kumaun University Nainital

Uttarakhand – 263002

object detection in home surveillance 2

Abstract

Home security is one of the major demand of the modern home, most cheaper home security

systems are not intelligent to understand and process visual information in an image, detect

different threats and alert if they found one. This project implements a cheaper solution for

home security system that uses power of deep learning and object detection inside a raspberry pi

that process and understand visual information captured using pi camera and alert user as it

detects any threat. This project currently detects four categories (person, monkey, cat and dog)

but can be extended to detect more categories. This project can also be extended from home

security system to other surveillance task like detecting hunters in forest, detecting poisonous

snakes, detecting threats in country border etc. by re-training object detection model with data of

desired categories. A more unified and precise surveillance system can be created by using more

data and compute.

Keywords: surveillance system, object detection, computer vision application

object detection in home surveillance 3

1. INTRODUCTION

The use of home surveillance system is necessary for modern houses, CCTV cameras are placed

on every street, shops and societies but they are not intelligent that they can detect and alert us

from threats as they appear, which sometime can save us from big trouble. This project, tries to

implement an intelligent security system by re-using hardware of installed surveillance system

like IP camera which will save cost or using a raspberry pi and a camera. This system is capable

of detecting and alerting threats if it found one, it even record environment video at that instance

which can be used for further analysis. In India there are a lots of places where monkey theft

occurs a lot they silently enter the house and steal away things, sometimes they even steal or

destroy some precious items, not only monkeys are thieves, cats are also expert in this task. This

project extends this idea to a person and dog as well. Further, we can also extend it not only for

home surveillance but to some specific task like detecting snakes that accidentally enters the

house or cattle sheds which can harm the residents, protect wildlife from hunters by alerting the

authorities as it detects them, alerting people about the presence of leopard or tiger in the locality

there are a lot of cases that happens in our area a lot where people get attacked by them, and

much more endless possibilities. To make system understand, detect and act on environment

object detection is used which is part of computer vision. It let computers to classify and localize

objects in an image. Using it we gave computers the power to locate objects in an environment.

Object detection can be done based on classical methods of hand extracted features from images

and classify them or using deep learning techniques which automatically learns features from

images. These deep learning based methods outperforms classical algorithms by large margin.

Currently object detection is mostly done using deep learning techniques and is one of the most

active area of research. The working demo of the project detects threats using digital image

object detection in home surveillance 4

provided by a camera and alerts user through the mail with image of detected threat. As object

get detected the video recorder gets activated that records short video of that instance for later

watch and analysis. The demo can detect four classes monkeys, cats, dogs and person. For

optimization, the project uses multiple threads that enable the program to run different threads

parallelly and take advantage of full compute resources. Email and video recorder runs on their

separate thread so they do not interfere with the main thread which does detections, this results

the boost in inference time of the model. The object detection models were implemented using

TensorFlow’s object detection API which contains lots of pre-trained models. For comparing and

selecting a model based on use case, three best models: SSDMobileNetV2, SSDMobileNetV2

FPNLite and EfficientNet D0 were selected based on their inference time. The inference time of

these models is important since we want realtime object detection. These models were trained for

10000 steps in data collected from internet and open image dataset (OID) and compared. From

comparison of these models we understand the relation between model’s inference time and its

accuracy are inversely proportional, more the model is accurate more it takes to infer.

In the next section we have reviewed all points which are necessary to understand the base of

project from object detection, techniques and metrics to measure performance of models. Section

3 devotes to all methodology and setups along with all comparisons between models. Section 4

analyses these comparisons and deduce result and make an analysis of the further research

directions.

object detection in home surveillance 5

2. REVIEW OF LITERATURE

For understanding content of image in security camera we have to use computer vision

techniques that let machines to interpret contents of digital images feed through camera. This

project uses computer vision techniques to detect threats in images.

2.1. Computer Vision

Computer vision is a field of artificial intelligence that trains computers to interpret and

understand the visual world. Using digital images from cameras and videos we try to create

machines with vision capabilities that can detect, localize, classify object in the environment and

can react based on the information they gather through their vision.

Based on the task performed with computer vision, computer vision can be classified into three

levels:

Low-Level vision.

Vision tasks that include basic image manipulation came under this category. Example:

resizing the image, converting to grayscale, changing exposure, finding edges, finding image

gradients etc. These tasks more emphasize on pixel manipulation in images.

Mid-Level Vision.

Vision tasks that include connecting different images that could be used to map the

environment came under this category. Example: panorama stitching, Multi-view stereo,

Rangefinding, optical flow etc. These tasks emphasize on connecting images to form real-world

scenes.

object detection in home surveillance 6

 High-Level vision.

Vision task that includes extracting and features from images and understanding

semantics. Example: image classification, object detection, semantic segmentation, image to 3D

map etc. These tasks emphasize on extracting and understanding the content of images.

This project needed to detect threats like monkeys, person, dogs, snakes etc. from images and

alert user, this task came under the category of high-level vision in machine has to understand

semantic of image i.e. understand contents of image. Object detection is one of the high level

vision technique that is base of this project.

2.2. Object Detection

Object Detection is high level computer vision task that deals with detecting instances of visual

objects in digital images. It classifies and localize objects presented in images. It helps computer

to answer the question of What object is where?

Object detection is basis of many task in computer vision like object tracking, instance

segmentation etc. From past two decades the object detection research is flourishing and

improvement process still continues. The major impact on researches were seen after re-

emergence of deep learning techniques in computer vision from then this field is progressing

exponentially.

Object detection techniques are now widely used in many real-world applications like video

surveillance, self-driving cars, robot vision, augmented reality etc.

Evolution of Object Detection.

The past two decades were boon for field of object detection thanks to all dedicated

computer vision scientist. So without understanding the evolution of object detection it would be

object detection in home surveillance 7

difficult to understand how this field reached the current milestone. Evolution of object detection

happens in phases, we can divide these phases as

• Traditional object detection

• Deep Learning based object detection

Traditional Object detection.

Deep learning phase has seen exponential growth in past decade and so object detection

too, but traditional methods are one that led us to reach the position in which we are now. Most

of the early object detection algorithms were based on handcrafted features due to lack of

effective image representation at that time and speed hacks due to lack of computational

resources.

object detection in home surveillance 8

Voila Jones Detectors.

In 2001 Paul Viola and Michael Jones achieved real-time detection of human faces in

digital images for the first time which ran on a 700MHz Pentium III CPU. They used

combination of simple features and boosted classifiers which run on whole image using sliding

window approach. For achieving real-time detection speed it uses idea of integral image that

saves lots of computation while window slide across image. The features were very simple called

Haar wavelets, which were created randomly by taking average of pixels in one box and subtract

with average of other box in example faces. Using this a huge set of random features pool

(around 180k-dimensions) were created. Then using Adaboost algorithm a small set of features

was selected which are helpful for face detection. These feature sets were easy to compute, for

more optimization in calculations integral image technique was used. Integral image is

computation speed up method which makes computational complexity of each window in voila

jones detector independent of its window size.

HOG Detector.

HOG stands for histogram of oriented gradients proposed in 2005 by N. Dalal and B.

Triggs. It is considered as improvement of SIFT (Scale invariant feature transform) which is a

feature detector and descriptor. The part which is different from SIFT is normalization of

gradients using local window using this balances feature invariance. the HOG descriptor also

uses overlapping local contrast normalization for improving accuracy. These HOG features then

trained using SVM to detect different classes of objects. The primarily motivation of HOG

detection is pedestrian detection but can be used to detect different objects. To detect objects of

different sizes it rescales input image for multiple times while keeping size of window

unchanged.

object detection in home surveillance 9

DPM.

Deformable parts model (DPM) was originally proposed by P. Felzenszwalb in 2008 as

an extension of the HOG detector. It combines knowledge of physics and mathematics therefore

often called physics based model. Deformable objects are geometric objects whose shape can

change overtime. DPM can deal with change in dynamics of objects an example of which is in

pedestrian detection a pedestrian can have different poses. Instead of running HOG in whole

image, we have HOG features of different parts of body. The result from all individual parts are

merged to get output. DPM are more robust to noise than HOG.

Many of new object detection techniques are still deeply influenced by its valuable

insights from P. Felzenszwalb, e.g., mixture, hard negative mining, bounding box regression, etc.

In 2010 P. Felzenszwalb and R. Girshick were awarded the lifetime achievement by PASCAL

VOC.

Deep Learning based object detection.

These handcrafted features models performance become saturated and very little

improvements were happening in this field between 2010 – 2012. These little improvements

were based on previous models which shows very insignificant progress. In 2012 after rebirth of

convolutional network a new blood pumped in the field of object detection, which also led to the

birth of modern object detection. Convolutional deep learning based object detection can further

be divided into two groups

• Two stage detector

• Single stage detector

Two stage detector detects objects in two phases, in first phase they detect regions where

objects are present and in second stage they detect bounding boxes and classes of objects in

object detection in home surveillance 10

image. While in one stage detectors combine both these phase into one, they detect and classify

objects in one go.

Two stage detectors.

• R-CNN

RCNN uses selective search algorithm for generating region proposals by merging

similar pixels into regions. The regions got from this step were warped, resized and pre-

processed then passed into a CNN which produces feature vectors these feature vectors are then

used for classification and bounding box regression which result bounding boxes of objects and

their classes. RCNN yields a significant performance boost on VOC07 dataset, with a large

improvement of mean Average Precision (mAP) from 33.7% in DPM-v5 to 58.5%.This

algorithm was fast with respect to sliding window approach and then passing each window to

CNN but it was still quite slow to be used in realtime object detection.

• Fast RCNN

In 2015, R. Girshick proposed Fast RCNN detector which is further improvement of

RCNN. Fast RCNN also uses selective search to find region proposals but it redefined

architecture of RCNN to make it fast. In RCNN first regions were proposed then these regions

were passed to a CNN which lead to multiple pass of images to CNN which is costly operation.

Fast RCNN improves this process of multiple passes to CNN which makes it much faster than

RCNN. In Fast RCNN whole image is passed through CNN and regions proposals are extracted

from image. These proposals then then pooled directly on feature map by using ROI (region of

interest) pooling. These pooled vectors are then passed through fully connected layer for

classification and bounding box regression. On VOC07 dataset, Fast RCNN increased the mAP

from 58.5% in RCNN to 70.0% while having detection speed over 200 times faster than R-CNN.

object detection in home surveillance 11

This algorithm saves multiple passes to CNN but still there is bottleneck of finding region

proposals which limit speed of algorithm. This was solved in later version of RCNN called

Faster RCNN

 • Faster RCNN

In 2015 shortly after Fast RCNN, S. Ren et al. proposed Faster RCNN detector. Faster

RCNN was the first end-to-end, and the first near-realtime deep learning detector. Faster RCNN

unified region proposal and detection network by introducing region proposal networks that

enables cost free region proposals. Region proposal use anchor boxes in image and predicts if

feature map contains foreground or background. This RPN network is part of training network

whereas in previous RCNN networks they use selective search techniques for this task which is

not part of network this decrease training and inference time of network. On VOC07 dataset,

Faster RCNN increased the mAP from 70.0% in RCNN to 73.2% and COCO mAP@.5 is 42.7%.

One stage detectors.

• YOLO

YOLO stands for ‘you only look once’ it is the first one stage object detector proposed by

R. Joseph et al. in 2015. YOLO is popular object detection network because of its speed. A fast

and enhanced version of YOLO can run at 155fps with VOC07 map = 63.4%. These networks

are not the accurate one they suffer from drop of the localization accuracy compared with two-

stage detectors, especially for some small objects but due to their speed they are used in many

real world applications. R. Joseph has made series of improvements in YOLO and released

YOLOv2 and YOLOv3. For detecting objects of different sizes YOLOv3 introduced detection in

multiple scales of image. Currently YOLO is in active development phase the latest version

YOLOv4 and YOLOv5 have been released in 2020 with major improvements on speed and

object detection in home surveillance 12

accuracy. This network divides image into certain regions and predicts bounding boxes and

classification score for each region by applying a single convolutional network in image at once.

YOLO networks are fully convolutional networks the final predictions of network are also in

form of a feature map rather than a dense layer. It’s like implementing sliding window using

convolutional network.

• SSD

SSD was proposed by W. Liu et al. in 2015, it stands for single shot detection and second

one stage network using deep learning. SSD used multi-reference and multi-resolution which

improve detection accuracy for small objects. SSD have good combination of detection speed

and accuracy with VOC07 mAP = 76.8% and COCO mAP@.5=46.5% and can run at 59fps.

SSD detects objects of different scales on different layers of network while previous networks

only run detection on top layers.

2.3. Object Detection Metrics

These metrics let us to measure performance and effectiveness of different models, and helps to

compare them. Previously there was no standardize method to measure any objet detection

models, different models use different metrics to measure their performance like miss rate vs

false positive rate per window (FPPW) or false positive per image (FPPI) used in Caltech

pedestrian detection. In recent years the most frequently used algorithm for object detection is

Average Precision (AP) which was introduced in VOC2007. It is defined as average detection

precision under different recalls and measured for every specific category. To compare

performance over all categories, mean AP (mAP) average of AP for all categories is taken. This

mAP score is taken as final measure to compare different object detection networks.

object detection in home surveillance 13

To measure accuracy of object localization the Intersection over Union (IoU) is used. It measures

how much predicted bounding box overlaps with ground truth box. It is ratio of area of overlap

of predicted box with ground truth box to the total area (union) of predicted box and ground box.

𝐼𝑂𝑈 =
𝑃⋂𝐺

𝑃⋃𝐺

𝑤ℎ𝑒𝑟𝑒 𝑃 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥

𝑎𝑛𝑑 𝐺 = 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥

Based on some threshold value (generally 0.5) we can categorize box as false positive or

true positive.

e true+v

else:

ve false+

hreshold:if IOU < T

The 0.5-IoU based mAP has then become the widely used metric for object detection

problems for years. To calculate mAP we need to calculate two things precision and recall for

every class and plot them in a graph with varying thresholds. The area under precision-recall

curve gives AP for that class. To find mean average precision (mAP) we take average of AP

across all classes.

2.4. Transfer Learning

Transfer learning is technique of training a network by using and fine-tuning a pre-trained

model. This method of training requires less data and less computation power since most of the

features were previously learned by network. This helps to train network if data and computation

are limit with good accuracy. It is called transfer learning since previous knowledge of network

about a task was transferred as knowledge for new task. This is same as human learns things, we

object detection in home surveillance 14

use some previous experience and learnings into new tasks and fine-tune them which helps us to

learn faster.

In analogy of deep learning model we transfer weights of previous training as starting

point for new training and fine-tuning our new model.

2.5. TensorFlow Object Detection API

The TensorFlow Object Detection API is an open source framework built on top of TensorFlow

that makes it easy to construct, train and deploy object detection models. Google use this

codebase to be for their computer vision needs. It let us to create accurate machine learning

models capable of localizing and identifying multiple objects in a single image.

This API supports both TensorFlow 1 and TensorFlow 2. Majority of modules are

compatible with both versions.

TensorFlow object detection API provide us pre-trained object detection models that can

be used to train custom models with transfer learning. It also provides cutting edge new research

object detection models.

This project also uses this API because it provides wide ranges of object detection models

as per need and pre-trained weights for transfer learning which require less computation time and

data for training as compared to training model from scratch.

object detection in home surveillance 15

3. REPORT ON THE PRESENT INVESTIGATION

3.1. Methodology

The project development was divided into phases that help in structuring the project and

increases productivity.

Planning and structuring the idea

The first step for any project is crucial, here I planned all strategies and approaches to

deal with the idea of the project. Materials related to such were searched and collected from the

internet with information regarding best tools, practices, research papers and lectures necessary

to learn before creating project. Learning tasks were prepared to efficiently gain the required

knowledge for the project.

Acquiring Knowledge

All collected resources were skimmed through in the first step and useful resources are

selected from all which can be referred later to acquire knowledge of my problem domain.

Knowledge is acquired on computer vision from the classical era to the modern era with more

emphasis on object detection. Resources include lecture videos and texts.

Setting up project environment

Concurrently with phase two, the project environment was set up to start the development

of the project and implementing the idea. All tools which are needed were setup and configured

on the machine. I used my system for prototyping which was ideal for prototyping and testing

the idea later I use free cloud services with GPU provided by Google and Kaggle for the high

intensive task and at last, the project has to be ported to raspberry pi, all platforms were set up

for further development.

object detection in home surveillance 16

Planning development phase

Plan for the development of the project was created in this phase which provides a more

efficient workflow and management of the project became easier. For this Google Tasks

application was used. The project was divided into stages and the first five stages were the heart

of the project which includes detection of threats from images and last five tasks were

functionalities required for a security camera.

Project development phase

According to the plan defined in previous phase work on the project was started. The first

step was to prototype the first five stages of the plan which include detection of threats. Data was

collected for the training of model and a working prototype was created in local machine to train

and test model. After a successful attempt, the code was shifted to Google Colab and Kaggle

kernels to train.

Data Collection.

Data collection is a crucial part of training a good model. The data which I needed was

location annotated images of threats which I want to detect using a camera. For this task images

were scraped from the internet. These images then were hand-annotated by using an image

labelling software called labelimg.

There were around 1000 images to annotate containing images of threats. Since later

more threats categories were inserted it became difficult to hand annotate these images and also

we need plenty more images per category to train so for that I used open image dataset which

contains hand-annotated images of various categories. To download data of selected classes, a

script was used that downloaded around 2000 images per category for training and around 400

images for testing from open images dataset.

object detection in home surveillance 17

Training and testing models.

After data was collected the next step was to load the data in the project and use that

loaded data for training and testing the model. The models were trained on free cloud GPU

provided by Google and Kaggle in Google Colab and Kaggle Kernels respectively.

Different deep learning models were trained in this phase and their progress was tracked.

The models which were trained were selected on the basis their mAP score and time taken to

inference an image. Then using transfer learning on those models they were trained. Transfer

learning was used because of my limit of data and computation power.

Comparing and selecting model.

Since I will be using a raspberry pi later for production which is low computational

device hence the model selection is very crucial for a better experience. Out of all trained

models, a less computation model with mAP score greater than 50 has to be selected so to give

better accuracy since all models scores above 50 the model with less inference time was selected

which can be used with raspberry pi for realtime detection.

Combining detection in live feed.

Scripts for detection of threats on a live video feed from the camera were created. This

script creates bounding boxes around threat when detected in feed along with confidence score

and class of threat. This script was tested on the local machine with i3 6th gen CPU, the model

provides performance around 10 FPS.

After successful implementation of the first stage of the project, security features were

implemented the major ones were alerting person about the detection of threat and recording that

instance in form of video for later watch.

object detection in home surveillance 18

Implementing Features.

For sending alerts I used emails as it is easy to set up and send notifications and we do

not need to pay for any subscription. The program also restricts to send email continuously as it

can spam inbox and block account too. In an email, an image of detected threat is also sent so

that the user can confirm and check if it’s dangerous or not. A user can also block detections

emails for some specific classes of threats.

The recording feature starts recording video when any threat appears on video frame to

the time it disappears from the frame. It also handles recording when multiple threats appear in

the same frame.

Packing and Testing the code.

In this step, all project files are combined into a package with configuration files for

script changing parameters easily. Then the whole project again undergoes testing once again

which ensures all merged modules are working as expected.

Optimization with threading

The whole project is optimized by using the concept of multithreading. Modules which

are independent to each other are divided into different threads so they can run concurrently this

take advantage of multiple cores of CPU and performance increases by a large factor. Detection

of threats, sending email alerts and recording videos are on separate threads which increases

performance.

Porting to Devices

Finally, the whole project is ported on devices (surveillance system, raspberry pi) and

inference performance are tested on it. For capturing live feed pi camera was used in raspberry pi

object detection in home surveillance 19

and IPCamera in surveillance system. Some optimizations were again made while reading input

from the camera by introducing separate thread for this task. Final testing was again done and

check for all modules working well combined with multithreading.

3.2. Experimental Setup

1. Development Tools

Python

Python is an interpreted, high-level and general-purpose programming language. Created

by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code

readability with its notable use of significant whitespace. Its language constructs and object-

oriented approach aim to help programmers write clear, logical code for small and large-scale

projects.

Python is dynamically typed and garbage-collected. It supports multiple programming

paradigms, including structured, object-oriented, and functional programming. Python is often

described as a "batteries included" language due to its comprehensive standard library.

Python interpreters are available for many operating systems. A global community of

programmers develops and maintains CPython, a free and open-source. A non-profit

organization, the Python Software Foundation, manages and directs resources for Python and

CPython development.

Python is most widely used language when it comes to machine learning due to wide

numbers of scientific computation and machine learning frameworks. It is widely used language

in machine learning research.

object detection in home surveillance 20

NumPy

NumPy is a library for the Python programming language, adding support for large,

multi-dimensional arrays and matrices, along with a large collection of high-level mathematical

functions to operate on these arrays. In 2005, Travis Oliphant created NumPy. It is open-source

software and has many contributors.

Numpy provide optimized high dimensions matrices and operations it is supported by most of

machine learning frameworks.

TensorFlow

TensorFlow is a free and open-source software library for dataflow and differentiable

programming across a range of tasks. It is a symbolic math library, and is also used for machine

learning applications such as neural networks. It is used for both research and production and

backbone for lot of machine learning applications

Dataflow programming is a programming paradigm that models a program as a directed

graph of the data flowing between operations, thus implementing dataflow principles and

architecture.

Differentiable programming is a programming paradigm in which a numeric computer

program can be differentiated throughout via automatic differentiation. This allows for gradient

based optimization of parameters in the program, often via gradient descent. Differentiable

programming has found use in a wide variety of areas, particularly scientific computing and

artificial intelligence.

TensorFlow was developed by the Google Brain team for internal Google use. It was

released under the Apache License 2.0 on November 9, 2015.

object detection in home surveillance 21

OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and

machine learning software library. OpenCV was built to provide a common infrastructure for

computer vision applications and to accelerate the use of machine perception in the commercial

products. Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and

modify the code.

It has C++, Python, Java and MATLAB interfaces and supports Windows, Linux,

Android and Mac OS. OpenCV leans mostly towards real-time vision applications and takes

advantage of MMX and SSE instructions when available. A full-featured CUDA and OpenCL

interfaces are being actively developed right now. There are over 500 algorithms and about 10

times as many functions that compose or support those algorithms. OpenCV is written natively

in C++ and has a template interface that works seamlessly with STL containers.

2. Machines and Platforms

For this project different sets of machines and platforms are used to prototype, train and

deploying. For prototyping and testing my personal laptop was used, since for training a model

we need a good GPU without it would be very time consuming. So for training free GPU from

Google and Kaggle are very helpful which helps to train model under 4 hours. For deployment

raspberry pi was chosen since its size is small and is ideal for creating a security camera. The

operating system of these devices vary between Windows and Linux. My personal laptop uses

Windows operating system while all other machines run a flavor of Linux.

object detection in home surveillance 22

ACER E-15

This is my personal laptop which runs windows operating system and contains a low spec

GPU which is enough for prototyping and training for less iterations also it is always accessible

to me.

SPECS:

• RAM: 12GB

• Memory: SATA SSD 256GB

• GPU: NVIDIA GEFORCE 940MX

i. Transistor Count: 1870 Million

ii. Memory Type: GDDR5, DDR3

iii. Memory bus width: 64 Bit

iv. Max. Amount of Memory: 4GB

v. CUDA cores: 384

Google Colab

Google Colaboratory, or Colab, allows us to write and execute Python in a web browser,

without any extra configurations. This is an interactive notebook based environment which are

running on virtual machines provided by Google Research.

Colab is a hosted Jupyter notebook service that requires no setup to use, while providing

free access to computing resources including GPUs and TPUs.

Colab notebooks are stored in Google Drive, or can be loaded from GitHub. Colab is able

to provide free resources in part by having dynamic usage limits that sometimes fluctuate, and by

not providing guaranteed or unlimited resources. This means that overall usage limits as well as

idle timeout periods, maximum VM lifetime, GPU types available, and other factors vary over

object detection in home surveillance 23

time. Colab does not publish these limits, in part because they can (and sometimes do) vary

quickly.

SPECS:

• RAM: 12GB

• Memory: 34GB + Google Drive memory

• GPU: NVIDIA TESLA K80

i. Transistor Count: 7,100 million

ii. Memory Type: GDDR5

iii. Memory bus width: 384 Bit

iv. Max. Amount of Memory: 12GB

v. CUDA cores: 4992

Kaggle Kernels

Kaggle Kernels are cloud computational environment that can be accessed via web

browser that enables reproducible and collaborative analysis without any extra configurations.

Kaggle supports Python and R language. Kaggle kernels are also hosted Jupyter notebook

service which provide free GPU and TPU for computation.

SPECS:

• RAM: 13GB

• Memory: 34GB + Google Drive memory

• GPU: NVIDIA Tesla P100

i. Transistor Count: 15,300 million

ii. Memory Type: HBM2

iii. Memory bus width: 4096 Bit

object detection in home surveillance 24

iv. Max. Amount of Memory: 16 GB

v. CUDA cores: 3584

The P100 provides 1.6x more GFLOPs and stacks 3x the memory bandwidth of the K80.

Raspberry PI

The Raspberry Pi is a series of small single-board computers comparable to size of a

credit card. It contains all the components of a computer and it works as a computer. These were

developed in the United Kingdom by the Raspberry Pi Foundation. They are used by hobbyist

for creating various projects. As of now Raspberry Pi has model 4 in market with upto 8GB of

RAM in its higher configuration.

There are lot more versions of Pi in market, for this project I am using Raspberry Pi 3B

with inbuilt wireless LAN and Bluetooth.

SPECS:

• RAM: 1GB

• Memory: size of memory card inserted (32GB class 10)

• CPU: Quad Core 1.2GHz

• Architecture: 64bit

• BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board

• 100 Base Ethernet

object detection in home surveillance 25

3.3. Comparison of object detection models

For this project we need to a select a model that has low inference time and greater mAP value

for accurate realtime object detection, on this note three models (SSDMobileNetV2,

SSDMobileNetV2 FPNLite and EfficientNet D0) were selected as per the information from

object detection API, these models have low inference time but in cost of accuracy. These models

are used for realtime object detection based on the devices which will be used for inferencing, if

device has low compute power we have to use model with low inference time but for more

compute powered devices we can deal with more complex model for more accuracy. In this

section we will compare these three models based on inference time, mAP score for measuring

accuracy and training time. As per the results of comparison we can conclude better about, which

model is suitable which device. The below results are based on the training of models for 10000

epochs.

Comparison of object detection metrics

In this part we compare Average Precision (AP), Average Recall (AR) and Mean

Average Precision (mAP) for models using thresholds 0.50:0.95, 0.50 and 0.75. Here we also

compare these metrics with respect to object size (small, medium and large).

Comparison of Average Precision and Average Recall (AP and AR)

0

0.5

1

IoU = 0.50:0.95 IoU = 0.50 IoU = 0.75

Average Precision on different IoU threshold

SSDMobileNetV2

SSDMobileNetV2 FPNLite

EfficientNet B0

0

0.2

0.4

0.6

0.8

area = small area = medium area = large

AP at IoU = 0.50 : 0.95

SSDMobileNetV2 SSDMobileNetV2 FPNLite

EfficientNet D0

object detection in home surveillance 26

From above graphs we observe that EfficientNet D0 is outperforming SSDMobileNet

FPNLite and SSDMobileNetV2 in terms of AP and AR. High precision relates to the low false

positive rate and High recall relates to low false negative rate. For small objects all models are

struggling hard, EfficientNet has some significant value in average recall. For medium size

objects EfficientNet is in lead with large margin followed by SSDFPNLite, margin between

SSDMobileNet and SSDFPNLite is low. For larger objects all models are performing well, but

EfficientNet is in clear lead while SSDMobileNetV2 and SSDFPNLite are very close.

Comparison of mAP metrics.

0

0.2

0.4

0.6

0.8

IoU = 0.50:0.95 IoU = 0.50 IoU = 0.75

Average Recall on different IoU threshold

SSDMoblileNetV2

SSDMobileNetV2 FPNLite

EfficientNet D0

0

0.2

0.4

0.6

0.8

1

area = small area = medium area = large

AR at IoU = 0.50 : 0.95

SSDMobileNetV2 SSDMobileNetV2 FPNLite

EfficientNet D0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

mAP mAP@.50IoU mAP@.75IoU

mAP comparision of models

SSDMoblileNetV2

SSDMobileNetV2 FPNLite

EfficientNet D0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

area = small area = medium area = large

mAP based on size of objects

SSDMobileNetV2 SSDMobileNetV2 FPNLite

EfficientNet D0

object detection in home surveillance 27

In terms of mAP scores since EfficientNet is leading in terms of AP and AR therefore it

has higher mAP too. Followed by SSDFPNLite then SSDMobileNet both of them are very close

in terms mAP score but for medium size objects SSDMobileNet is struggling.

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡 𝐵0 > 𝑆𝑆𝐷𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2 𝐹𝑃𝑁𝐿𝑖𝑡𝑒 > 𝑆𝑆𝐷𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2

Comparison of Inference time

SSDMobileNet is fastest and can process a single image in 1.4 seconds while

EfficientNet takes more than 3 times of that to process an image. So SSDMobileNet is the choice

if we need better response time in low computing devices. In an Intel i3 CPU SSDMobileNet on

average provides 10 FPS while SSDFPNLite provides 8 FPS and EfficientNet is way behind at 2

FPS.

Comparison in time taken to train models

Here we compared the time required to finish training by a model. We have taken 10000

epochs as standard for comparing training time of a model.

1.4

1.85

5

0

1

2

3

4

5

6

SSDMobileNetV2 SSDMobileNetV2

FPNLite

EfficientNet B0

Inference time in sec

10

8

2

0

2

4

6

8

10

12

SSDMobileNetV2 SSDMobileNetV2

FPNLite

EfficientNet B0

FPS Comparison in live feed

object detection in home surveillance 28

From above graph we can clearly see that SSDMobileNet is fastest to train which take

about 1 hour 16 min to train followed by SSDFPNLite with 1 hours 50 min and EfficientNet

with 3 hours 40 min. This comparison can be neglected while deriving conclusions, since it does

not matter because we do not need to train model every time, we can train once and run infinite.

The thing matter is how well model performs in inference device.

1.16

1.49

3.39

0

0.5

1

1.5

2

2.5

3

3.5

4

SSDMobileNetV2 SSDMobileNet FPNLite EfficientNet B0

Training time taken (hours)

object detection in home surveillance 29

4. RESULTS AND DISCUSSIONS

4.1. Results

After all the comparison between models we have to decide which model to be used for final

work. From all the comparisons we can conclude that there is no perfect model which we can

use, there is tradeoff between inference time and model accuracy. The more accurate model takes

more time to infer. The below graph is conclusion of all the comparisons we made.

Since there is tradeoff between accuracy and inference time so our choice of model now

depends on inference device we choose. The one property we want most is realtime object

detection so in some cases we might have to neglect high accuracy. For low compute power

devices like raspberry pi 3 or older we can use SSDMobileNetV2 as it runs faster and gives

decent has decent mAP score, it will not be highly accurate but can compete with other in terms

of detecting large objects. If we define use case of camera to be static and its angle of coverage

(describes the angle range that a camera lens can image) is low, then most of the objects are big

enough and can be detected by model easily. If camera has wide line of coverage then

SSDMobileNetV2

SSDMobileNetV2

FPNLite

EfficientNet D0

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0 1 2 3 4 5 6

mAP score V/S inference time

object detection in home surveillance 30

SSDMobileNet can fail or detections might be wrong, to prevent this we can use SSDFPNLite

which is much more accurate than SSDMobileNet in terms of detecting medium sized object but

it can cause drop in FPS of realtime detection by some amount but it would not be more since

from above chart we can infer the difference is very little. If FPS is too low for our use case, then

we can use more compute power device like latest raspberry pi model 4. We can also use IP

camera for surveillance which will stream feed inside network and can be read using rtsp URL

and feed to object detection model, this case is ideal since we are re-using hardware which will

save cost. The model can be installed in surveillance device which has more compute power and

we can run more complex models too. EfficientNet will be useful with very wide coverage range

camera since it is good in detecting medium size objects. Very distant objects are hard to pick

correctly by these models since they appear small.

4.2. Future Directions

As further research in object detection advances new and better algorithms will be accessible

which will improve results of threat detection too. In future TensorFlow lite support for all sorts

of models in object detection API will make detections possible in low compute devices. The

future research in lightweight object detection will open a doorway for low power devices to

become more accurate and fast which concurrently improve the speed and accuracy of

detections, this also decreases cost since cheaper low compute device can perform detections

using these models. Also the further advancement of research in abstract learning, training a

model will be much easier as few training data can train a good object detection model. The

project mostly suffers from detection of small objects, as further research advances around this

context it opens doors for some potential applications like counting the population of wild

animals with remote sensing, detecting anomalies from long distance and surveillance of military

object detection in home surveillance 31

targets etc. Further we can implement image to context which will detects threat and analyses the

action performed by it and alerts with the action performed by threat. The further advancement in

object detection will lead to betterment of intelligent surveillance systems in terms of

performance, speed and accuracy.

object detection in home surveillance 32

5. SUMMARY AND CONCLUSIONS

The aim of this work is to create an intelligent security system using computer vision, this

was achieved by using object detection algorithms which detect threats in images taken from

camera and alerts user when found one. There are lots of object detection methods out there from

traditional object detection using manually extracted features to deep learning based object

detection which automatically detects features from images using convolutional neural networks.

We use single shot detectors (SSD) which are one stage detector, it enables us to use object

detection in real-time while providing reasonable accuracy. Previous two stage detectors are

accurate but not ideal for real-time detection and traditional object detection techniques are not

accurate enough although they are fast because of optimization techniques applied at that time

for old systems, they also could not bear changing lightning conditions. There are lots of version

of SSD’s but we are interested on those which can provide good FPS in real-time object

detection, for this reason three models were chosen based on their inference time record

presented in TensorFlow object detection API docs. These models were trained on dataset

collected from internet and labeled using LabelImg for 10000 epochs and later tested with

evaluation data to find model performance. The performance data of models is then used for

comparison of models.

These models were compared on the basis of inference time and accuracy they provide.

The main priority feature for comparison was inference time, because we can tackle with some

drop in accuracy but it will be hard to run object detection in real-time if inference time was

high. From comparisons we find SSDMobileNetV2 is fastest though the problem with this model

is it is struggling in terms of detecting smaller and medium sized objects. Although all models

we compared struggled to detect small objects but it is struggling with medium sized objects too.

object detection in home surveillance 33

It might not be problem with some security system requirements, but it might be poor while

detecting some small threats like snakes. It might also fail to detect if camera has wide line of

coverage which zooms out the perspective of environment. In terms of accuracy EfficientNet D0

is leading with large margin but it is resource intensive and takes about 5 secs to infer providing

1-2 fps in real-time detection in an Intel i3 CPU. The third model SSDMobileNet FPNLite is

moderate one it provides around 8 FPS which is little less than SSDMobileNetV2 but it provides

greater accuracy while detecting medium size objects.

The choice of model to use boils down to the choice of application and choice of device

which will be used for inferencing. If we need to detect small objects like snakes or detect distant

objects, then we have to choose EfficientNet or SSDFPNLite and device should be powerful

enough to maintain around 1 FPS for better results and the choice depends on amount of

accuracy we need for the task. In terms of security we can ask how dangerous is threat which we

need to detect? For devices like raspberry pi, we are bounded with compute limit so

SSDMobileNet is the choice. This model is also great if we want intelligent security setup for

cheap.

This work can be later evolved as evolution in object detection continues and new

lightweight accurate models come to existence. The detections further can be improved by using

more data to train until any abstract deep learning method come to existence. As object detection

techniques and research around detection of small objects continues to evolve, then this will

positively impact some intense security tasks like detecting military targets.

object detection in home surveillance 34

6. REFERENCES

[1] Z. Zou, Z. Shi, Y. Guo and J. Ye, "Object detection in 20 years: A survey" in

arXiv:1905.05055v2, 2019, [online] Available: https://arxiv.org/abs/1905.05055v2.

[2] Joseph Redmon, Ali Farhadi, "The Ancient Secrets of Computer Vision", 2018 [online]

Available: https://pjreddie.com/courses/computer-vision

[3] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, "You Only Look Once:

Unified, Real-Time Object Detection", 2016 [online] Available:

https://pjreddie.com/media/files/papers/yolo.pdf

 [4] Rokas Balsys, "Yolo v3 with TensorFlow 2", 2020, [online] Available:

https://pylessons.com/YOLOv3-TF2-introduction/

 [5] Adrian Rosebrock, "Increasing webcam FPS with Python and OpenCV", 2015, [online]

Available: https://www.pyimagesearch.com/2015/12/21/increasing-webcam-fps-with-python-

and-opencv/

object detection in home surveillance 35

7. PUBLICATIONS BY THE CANDIDATE

[1] Detection Dataset, “Monkey, Cat and Dog detection” on Kaggle Dataset [online] Available:

https://www.kaggle.com/tarunbisht11/yolo-animal-detection-small

[2] Code for Object Detection using YOLOv3, “Object Detection using YOLOv3 in TensorFlow

2” on GitHub [online] Available: https://github.com/tarun-bisht/object-detection-yolov3

[3] Code for Object Detection using Object Detection API, “TensorFlow Object Detection” on

GitHub [online] Available: https://github.com/tarun-bisht/tensorflow-object-detection

[4] Code for security camera, “Intelligent Security Camera” on GitHub [online] Available:

https://github.com/tarun-bisht/security-camera

[5] Code Notebook and discussion for generating training data, “Create your Image dataset” on

Kaggle and Google Colab [online] Available: https://www.kaggle.com/data/186747

[6] Notebook to train an efficientdet_d0 using transfer learning and object detection API, “Detect

Monkey Cat and Dog” on Kaggle [online] Available:

https://www.kaggle.com/tarunbisht11/detect-monkey-cat-and-dog

object detection in home surveillance 36

8. ACKNOWLEDGEMENT

I would like to express my gratitude and appreciation for all teachers of Computer

Science Department whose guidance, support, faith and encouragement has been invaluable

throughout this study. I would like to thank our HOD, Dr. Ashish Mehta for coming up with this

wonderful idea for project.

