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Abstract

This project studies a new approach called low-curvature neural networks (LCNNs) [10] to tackle is-
sues such as low adversarial robustness and gradient instability in standard deep neural networks. LCNNs
demonstrate lower curvature compared to standard models while maintaining similar predictive perfor-
mance, leading to improved robustness and stable gradients. The authors decompose overall model curva-
ture in terms of the constituent layer’s curvatures and slopes. They also introduce two novel architectural
components: the centered-softplus non-linearity and a Lipschitz-constrained batch normalization layer. We
compare the performance and adversarial robustness of LCNNs in the MNIST dataset. We then propose
parametric swish non-linearity. Our experiments showed that centered-softplus proposed by the author is
better than our proposed parametric swish.

1 Introduction

The high degree of flexibility present in deep neural networks is critical to achieving good performance in
complex tasks such as image classification, language modeling, and generative modeling of images. However,
excessive flexibility is undesirable as highly nonlinear models can have a high degree of sensitivity to small
changes in the input, which can lead to large changes in the output. This affects the adversarial robustness
of the model. Also, highly non-linear models can also suffer from exploding and vanishing gradient problems.
The paper for this project work focuses on training neural network models without excess non-linearity in
their input-output map, such that predictive performance remains unaffected using the idea of curvature and
introduces training of low curvature Neural Networks.

Curvature is a mathematical quantity that encodes a function’s flexibility or degree of nonlinearity at a point.
In deep learning, the curvature of a function at a point is often quantified as the norm of the Hessian at that
point. Hessian norms are zero everywhere if and only if the function is linear, making them suitable to mea-
sure the degree of nonlinearity. However, this measure suffers from the dependence on the scaling of model
gradients. To be able to study robustness independent of nonlinearity, the authors proposed normalized cur-
vature, which normalizes the Hessian norm by its corresponding gradient norm.

There are several approaches to training models with low-curvature input-output maps. One approach is to
directly penalize curvature locally at training samples, as proposed by previous studies [7, 8]. However, this
method involves expensive Hessian computations and minimizes local point-wise curvature rather than every-
where. Another approach proposed by Dombrowski et al. [2] involves using architectures with small global
curvature but does not explicitly penalize this curvature during training. The author’s proposed approach
involves efficient mechanisms for globally penalizing normalized curvature. Furthermore, while previous meth-
ods [7, 3] penalize the Frobenius norm of the Hessian, authors penalize its spectral norm, which provides
tighter and more interpretable bounds on robustness.

We provide a survey of existing literature in Section 2. Our proposal for the project is described in Section 3.
We give details on experiments in Section 5. A description of future work is given in Section 7. We conclude
with a short summary and pointers to forthcoming work in Section 8.
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2 Literature Survey

2.1 Curvature of a Model

In mathematics, the curvature is the amount by which a curve deviates from being a straight line. Intuitively,
it is a measure of how much a curve or surface is bending at a particular point. Hessian norm at that point
provides a measure of curvature at that point. Hessian norms are zero everywhere if and only if the function
is linear. Therefore, curvature Cf (x) = 0 ∀x ∈ Rd ⇐⇒ f is linear.

In the machine learning (ML) context, curvature measures the degree of nonlinearity of a model. A common
measure of the curvature of ML models can be described via Hessian norms

||∇2
xf(x)||2

Since the Hessian norm measure suffers from a dependence on the scaling of model gradients, authors have
proposed normalized curvature, which normalizes the Hessian norm by its corresponding gradient norm.

∥∇2
xf(x)∥2
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2.2 Adversarial Robustness of Neural Networks

Adversarial vulnerability of neural networks is a phenomenon that shows that adding small amounts of imper-
ceptible noise can cause deep neural networks to misclassify points with high confidence. One evident method
to defend against this vulnerability is adversarial training [6], which trains models to accurately classify ad-
versarial examples generated via an attack such as projected gradient descent (PGD). However, this approach
is computationally expensive and provides no formal guarantees of robustness. Previous studies, such as ran-
domized smoothing [1], local Lipschitz constant identification [5], penalization of the Frobenius norm of the
Hessian [7], and local linearity regularization [8], have all proposed methods to induce robustness by enforcing
low curvature. In this paper, the authors focus specifically on the out-of-the-box robustness of LCNNs.

2.3 Gradient Instability

Previous studies, including Ghorbani et al. [4] and Zhang et al. [11], have demonstrated that gradient expla-
nations in neural networks can be unreliable because, for any input, it is possible to find adversarial inputs
with highly dissimilar gradient explanations. Ros and Doshi-Velez [9] empirically showed that gradient regu-
larization could improve robustness. Dombrowski et al.[2] shows that gradient instability occurs due to large
hessian norms. Therefore, gradient regularization can improve model robustness. Dombrowski et al.[3] pro-
posed to train low curvature models via softplus activations and weight decay. Dombrowski et al. [3] focused
on the Frobenius norm of the Hessian.

||A|| =
√
AAH

while authors penalize the normalized curvature, which is a scaled version of the Hessian spectral norm.

2.4 Lipschitz Layers in Neural Networks

A function f : RM → RN is Lipschitz continuous if there is a constant L such that

∥f(x)− f(y)∥ ≤ L∥x− y∥
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∥f(x)− f(y)∥
∥x− y∥

≤ L

The smallest value of L is the Lipschitz constant of f and is denoted Lip(f).

Ideally, if inputs are similar for a neural network (NN), outputs should also be similar, implying we want the
Liptschitz constant L of the neural network to be small as possible. As the neural network is the composition
of functions, we can use the property of the Liptschitz constant defined in theorem 0.1

Theorem 0.1 Let f = g ◦ h. If g and h are Lipschitz continuous, then f is also Lipschitz continuous with
Lip(f) ≤ Lip(g)Lip(h).

Therefore, if we make each component of a neural network such that it is Lipschitz continuous with small Lip-
schitz constants, the whole neural network will also be Lipschitz continuous with small Lipschitz constants.
Activation functions and Pooling layers generally have Lipschitz constant L = 1 ex. ReLU activation. Using
Spectral Normalization, where linear layers are re-parameterized by dividing by their spectral norm, ensures
that the overall spectral norm of the parameterized layer is 1, which bounds Lipschitz constant L to be 1.

3 Methods and Approaches

According to the paper, we need the following components to train low-curvature neural networks(LCNNs).

3.1 Measuring model’s Nonlinearity

Since we know higher the curvature Cf of the model it is far away from being linear. maxx∈Rd Cf (x) can be
seen as a measure of a model’s non-linearity. One of the common measures of curvature is the Hessian norm
which depends on the scaling of gradients to deal with this issue authors proposed normalized curvature.

Cf (x) =
∥∇2f(x)∥2

∥∇f(x)∥2 + ϵ

Here, ∥∇2f(x)∥2 and ∥∇f(x)∥2 are spectral norm of Hessian and l2 norm of gradient of function f(x) respec-
tively and ϵ > 0. In order to have a network of low curvature, we can penalize the normalized curvature.
Although, directly penalizing the curvature is computationally expensive as it requires two backpropagation
steps in the network. On backpropagation estimating the Hessian norm requires backpropagating gradient-
vector products. We require an efficient method penalization procedure that takes a single backpropagation
step. If we can somehow control the curvature and Lipschitz constant of each layer of a neural network it will
enable us to control the overall curvature of the model. In the next section, we will look at some methods to
control the curvature of nonlinear activations and the Lipschitz constant of linear layers.

3.2 Centered Softplus Activation

As the curvature of a neural network depends on the curvature of its constituent activation functions authors
propose to use activation functions with minimal curvature. Here author proposes to use Softplus activation
which is a smoother version of ReLU. Softplus function is defined as

s(x;β) =
log(1 + exp(βx))

β



4

The curvature of softplus activation depends on β. Using small values of β ensures low curvature. However,
for small values of β softplus is diverging s(x;β −→ 0) = ∞. To deal with this issue, the authors proposed
centered softplus activation, which adds normalization terms to softplus.

s0(x;β) = s(x;β)− log 2

β
=

1

β
log

(
1 + exp(βx

2

)
The authors further propose to cast β as a learnable parameter and penalize its value which directly penalizes
that layer’s curvature.

3.3 Spectrally Normalized Convolutions and Fully Connected Layers

To penalize the Lipschitz constant of linear layer and convolutions layers spectral normalization technique is
used. For fully connected layers weights are normalized using simple spectral normalization, it is applied as

W

∥W∥2

For convolution power iteration method that work directly in linear mapping implicit to convolution. Using
normalization we ensure spectral norm of these layers is 1.

3.4 Parameterized Swish Activation

The reason behind choosing softplus activation in paper is due to the fact that it is continious and it resem-
bles with ReLU activation. So different activation function similar to ReLU other than softplus can be taken.
We choose Swish activation because of its continuity and the fact that with parameterized swish activation we
can control its curvature.

s(x) =
x

1 + e−x

s(x;β) =
x

1 + e−βx

As we decrease value of β the curvature of swish activation decreases. For β = 0 it becomes a straight line.
Also, it do not diverges like softplus for lower values of beta.

3.5 Work done before mid-term project review

We conducted a set of tasks, including reading and understanding relevant materials and references, as well as
the code provided by the author, testing it for errors, and fixing some of those errors. Similar to the authors,
we ran initial experiments using four ResNet18 models (two with LCNN and two without LCNN) but only
for 50 epochs with curvature and gradient norm regularizers on the CIFAR 10 dataset. The performance of
LCNN models was then compared with non-LCNN models.

3.6 Work done after mid-term project review

We analyzed the adversarial robustness of LCNN and non-LCNN networks. However, the models used in the
author’s code were Resnet 18, 34, and VGG, which took a lot of time to converge. Therefore, in the midterm
review, only 50 epochs were shown, and attacking those networks was not helpful as the accuracy was low
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in LCNN than non-LCNN variants. Additionally, training for more epochs was not possible due to the re-
source constraint. To overcome this, I used a small CNN model with 2 convolutions, batch normalization, and
2 dense layers with dropout along with the MNIST dataset instead of CIFAR10. We combined parts of the
author’s code with new training and validation methods and attack methods in a Python notebook to achieve
this. We also created a parameterized Swish activation function and made changes to the author’s code to
make it work. Finally, we analyzed the curvature and adversarial robustness of the proposed author’s activa-
tion with the parameterized Swish.

4 Data set Details

The MNIST (Modified National Institute of Standards and Technology) is a large database of handwritten
digits {0, 1, ...9}. This dataset contains 60, 000 training samples and 10, 000 test samples. This dataset is a
subset of the larger set made available by NIST. Each image in the dataset has been size-normalized and cen-
tered in a fixed-size image. Each image is a grayscale image of size 28 × 28. This dataset is widely used for
benchmarking in the field of machine learning.

5 Experiments

In this section we perform experiments to (1) evaluate performance of LCNNs (2) compare the adversarial ro-
bustness of LCNNs (3) evaluate the effectiveness of our proposed parameterized swish activation and its com-
parison with centered softplus. All experiments are done on machine with NVIDIA Geforce 940MX with 2GB
VRAM and 12 GB RAM. For longer run Kaggle environment was used that provide NVIDIA Tesla P100 with
16gb VRAM and 13 GB of RAM. We choose simple classifier with 2 convolutional layer + maxpooling and
2 linear layers with dropout was used. All the above models are trained using Adam optimizer with initial
learning rate of 10−4

6 Results

Table 1 and Table 2 shows experiment to comapare adversarial robustness of LCNNs with non-LCNNs. From
these tables we can see that LCNN are robust compared to non-LCNNs. Table 3 and Table 4 compare pro-
posed performance of Swish activation with Softplus for high and low values of β. Non-LCNNs models al-
though perform better with swish while LCNNs models perform better with softplus activation. Table 5 and
Table 6 shows curvature of with proposed swish activation and softplus activation. We can see taking swish
activation also decreases curvature of model but parameterized softplus outperforms swish by significant mar-
gin.

7 Future Work

LCNNs converge very slowly compared to non-LCNN variants for larger datasets a possible direction can to
come up with a training procedure to speed up the process this can include the proposal of a new optimizer
or training method.
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Model Acc (%) ∥ϵ∥ = 0.05 ∥ϵ∥ = 0.1 ∥ϵ∥ = 0.15 ∥ϵ∥ = 0.2

Net 98.289 88.09 62.82 62.82 62.82

LCNN 97.5699 90.10 71.22 71.22 71.22

Net + GradReg 98.4899 89.18 64.18 64.18 64.18

LCNN + GradReg 97.3999 89.50 68.11 68.11 68.11

Table 1: PGD attack accuracy of models with different regularization techniques

Model Acc (%) ∥ϵ∥ = 0.05 ∥ϵ∥ = 0.1 ∥ϵ∥ = 0.15 ∥ϵ∥ = 0.2

Net 98.289 92.24 79.33 58.09 32.63

LCNN 97.5699 91.72 79.44 59.46 38.49

Net + GradReg 98.4899 92.82 78.69 55.61 31.82

LCNN + GradReg 97.3999 91.18 77.07 57.63 37.22

Table 2: FGSM attack accuracy of models with different regularization techniques

Model Val Acc

Net 98.5699

LCNN 97.0799

Net + GradReg 98.3299

LCNN + GradReg 97.4399

(a) Validation Accuracy with Swish activation

Model Val Acc

Net 98.289

LCNN 97.5699

Net + GradReg 98.489

LCNN + GradReg 97.3999

(b) Validation Accuracy with Softplus activation

Table 3: Comparing Validation accuracy Swish and Softplus for higher values of β

Model Val Acc

Net 98.5699

LCNN 97.0799

Net + GradReg 98.20999

LCNN + GradReg 97.4399

(a) Validation Accuracy with Swish activation

Model Val Acc

Net 98.1899

LCNN 97.5699

Net + GradReg 98.5599

LCNN + GradReg 97.3999

(b) Validation Accuracy with Softplus activation

Table 4: Comparing Validation accuracy with Swish and Softplus for lower values of β
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Model Val Acc

Net 21.71792

LCNN 3.29209

Net + GradReg 22.37583

LCNN + GradReg 3.33040

(a) Curvature with Swish activation

Model Val Acc

Net 15.4774

LCNN 2.6635

Net + GradReg 15.2459

LCNN + GradReg 2.57437

(b) Curvature with Softplus activation

Table 5: Comparing Curvature with Swish and Softplus for higher values of β

Model Val Acc

Net 7.9653

LCNN 3.29209

Net + GradReg 7.77148

LCNN + GradReg 3.33040

(a) Curvature with Swish activation

Model Val Acc

Net 7.48276

LCNN 2.6635

Net + GradReg 7.4035

LCNN + GradReg 2.57437

(b) Curvature with Softplus activation

Table 6: Comparing Curvature with Swish and Softplus for lower values of β

Model Acc (%) ∥ϵ∥ = 0.05 ∥ϵ∥ = 0.1 ∥ϵ∥ = 0.15 ∥ϵ∥ = 0.2

LCNN (SP) 97.56999 90.10 71.22 71.22 71.22

LCNN (SW) 97.07999 86.58 60.92 60.92 60.92

LCNN + GradReg (SP) 97.3999 89.50 68.11 68.11 68.11

LCNN + GradReg (SW) 97.43999 88.10 64.03 64.03 64.03

Table 7: PGD attack accuracy of LCNNs with parameterized Swish and Softplus activation

Model Acc (%) ∥ϵ∥ = 0.05 ∥ϵ∥ = 0.1 ∥ϵ∥ = 0.15 ∥ϵ∥ = 0.2

LCNN (SP) 97.5699 91.72 79.44 59.46 38.49

LCNN (SW) 97.07999 89.21 71.37 47.80 22.96

LCNN + GradReg (SP) 97.3999 91.18 77.07 57.63 37.22

LCNN + GradReg (SW) 97.43999 90.70 75.29 54.02 34.20

Table 8: FGSM attack accuracy of LCNNs with parameterized Swish and Softplus activation

8 Conclusion

LCNNs with softplus activation functions demonstrate lower curvature and improved robustness against ad-
versarial attacks compared to non-LCNNs. Furthermore, it was observed that the LCNNs with softplus out-
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performed the proposed method with the Swish activation function, particularly in terms of adversarial ro-
bustness. While the results of the curvature comparison between the proposed activation function and the
softplus activation function were similar, there was a significant difference in terms of their ability to with-
stand adversarial attacks. These findings suggest that the use of low-curvature activation functions, using
softplus activation function, may be an effective approach to improve the robustness of neural networks against
adversarial attacks.
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