Langevin Autoencoders for Learning Deep Latent Variable Models

IE 506 Course Project

Team Name: Supernova Members

Tarun Bisht

Indian Institute of Technology Bombay

IEOR

April 27, 2023

Problem Description

Work done before Midterm and Comments

Work Done after Midterm

Experiments by Team

Conclusions

Future Direction

References

Problem Description

- One of the goals of unsupervised learning is to model the distribution of a given dataset $x \sim D$, i.e., model distribution p(x) such that $p(x) \sim p_D$. Here x contains samples from unknown distributions D. These models are called generative models.
- ▶ After we have learned the distribution, we can
 - find probability of arbitrary data point x, p(x)
 - sample point x from distribution, $x \sim p(x)$.
- ► This project focuses on one of the types of generative models called Latent Variable models. These models compute the dataset's exact or approximate distribution functions.

▶ We train these models using Maximum Likelihood estimation over some training dataset.

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} - \sum_{i=1}^{m} \log p_{\theta}(x^i)$$

- ▶ To solve this optimization problem, gradient descent-based methods can be applied for which the gradient of the objective function needs to be calculated.
- ▶ While calculating gradient expression we get

$$\nabla_{\theta} \log p_{\theta}(x) = \int p_{\theta}(z|x) \nabla_{\theta} \log p_{\theta}(x,z) dz$$

• We need to compute posterior p(z|x) to compute the gradient.

- ▶ The posterior calculation is intractable due to the lack of an analytic solution to the integral.
- ▶ We try to approximate the posterior distribution. There are two classes of methods for this:
 - ► Variational Inference approximate the posterior with a tractable distribution. Ex. Variational Autoencoder (VAE)
 - ► Markov Chain Monte Carlo(MCMC) provide sample based approximation of posterior distribution. Ex. Langevin Autoencoder (LAE)
- ► This paper uses MCMC based method (Langevin Dynamics) to approximate posterior.
- We want stationary distribution of Langevin Dynamics equation to be same as target posterior distribution, enabling sampling from posterior by simulating above equation.

Algorithm 2 Langevin Autoencoders

1: $\theta, \Phi, \psi \leftarrow$ Initialize parameters 2: repeat $\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(n)}\sim\hat{p}\left(\mathbf{x}
ight)$ 3: \triangleright Sample a minibatch of *n* examples from the training data. for t = 0, ..., T - 1 do ▷ Run ALD iterations. 4. $V_t = -\sum_{i=1}^n \log p\left(\boldsymbol{x}^{(i)}, \boldsymbol{z}^{(i)} = \boldsymbol{\Phi}q\left(\boldsymbol{x}^{(i)}; \boldsymbol{\psi}\right); \boldsymbol{\theta}\right)$ 5: $\mathbf{\Phi}' \sim q \left(\mathbf{\Phi}' \mid \mathbf{\Phi} \right) \coloneqq \mathcal{N} \left(\mathbf{\Phi}' : \mathbf{\Phi} - n \nabla_{\mathbf{\Phi}} V_t, 2n \mathbf{I} \right)$ 6: $V'_{t} = -\sum_{i=1}^{n} \log p\left(\boldsymbol{x}^{(i)}, \boldsymbol{z}^{(i)} = \boldsymbol{\Phi}' g\left(\boldsymbol{x}^{(i)}; \boldsymbol{\psi}\right); \boldsymbol{\theta}\right)$ 7: $\mathbf{\Phi} \leftarrow \mathbf{\Phi}'$ with probability min $\left\{1, \frac{\exp(-V'_t)q(\mathbf{\Phi}|\mathbf{\Phi}')}{\exp(-V_t)q(\mathbf{\Phi}'|\mathbf{\Phi})}\right\}$. 8: \triangleright MH rejection step. 9: end for $V_T = -\sum_{i=1}^n \log p\left(\boldsymbol{x}^{(i)}, \boldsymbol{z}^{(i)} = \boldsymbol{\Phi} q\left(\boldsymbol{x}^{(i)}; \boldsymbol{\psi}\right); \boldsymbol{\theta}\right)$ 10: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \frac{1}{T} \sum_{t=1}^{T} V_t$ 11: \triangleright Update the decoder. $\boldsymbol{\psi} \leftarrow \boldsymbol{\psi} - n \nabla_{\boldsymbol{\psi}} \frac{1}{\pi} \sum_{t=1}^{T} V_t$ 12: \triangleright Update the encoder. 13: **until** convergence of parameters 14: return θ, Φ, ψ **Bombay**

7

Work done before Midterm and Comments

- Reading overview of generative models, assigned paper, relevant referenced materials etc.
- ▶ Implemented paper code using PyTorch and Torch distributions
- Benchmarking was done between VAE and proposed LAE on their capability to reconstruct given input for MNIST dataset.

- Check generation capability comparing VAE and LAE latent space interpolation results.
- ▶ Analyze the representation learning capability of VAE and LAE.

- Model was trained for some longer epochs, and generation capability is checked by sampling from latent space and reconstructing input. Along with interpolation in latent space was performed.
- ▶ To analyze the representation learning capability of VAE and LAE, latent space representation of input data was used to train a single-layer neural network for both VAE and LAE, and accuracy was used as the measure.

Work Done after Midterm

- ▶ Image generation through random sampling from Gaussian noise was done.
- ▶ Some comparison of the effect of different parameters in LAE that are not in the paper.
- \blacktriangleright Analyze the representation learning capability of VAE and LAE was done
- ▶ A new training method is proposed and experiments were done regarding it.
- ▶ Adversarial robustness of the proposed method is compared.

Experiments by Team

latent dim z=2, no mh, step size 0.001, batch size 512, early stopping patience 10 and loss BCE

Model	Reconstruction Loss (MSE)	Val Loss (BCE)
LAE $ns=2$	0.00000743449	136.040208
LAE ns=10	0.00000716265	132.89959
LAE $ ns=50$	0.00000729323	134.36413

LAE z=2, num_steps 2, step_size 0.001, batch_size 512, early stopping patience 10, loss BCE

Model	Reconstruction Loss (MSE)	Val Loss (BCE)
LAE no_mh	0.00000743449	136.040208
LAE mh	0.00000748080	136.238208

LAE num step = 2 and no mh step size 0.001, single layer with ReLU activation and linear output activation

Model	Train Loss	Train Accuracy	Val Loss	Val Accuracy
VAE z=2	0.001352	0.0005407	0.001338	0.0005586
LAE z=2	0.00173053	0.0003460	0.00166865	0.00037973
VAE z = 8	0.00074552	0.00071939	0.00074213	0.0007355
LAE z = 8	0.00085344	0.00078394	0.00061837	0.00080696
VAE z = 16	0.00082766	0.00069669	0.00080636	0.00072118
LAE z = 16	0.00149354	0.00074028	0.00086874	0.00081385

▶ More number of steps leads to better accuracy.

- ▶ Increasing latent dimension also helps in both VAE and LAE.
- ▶ Using mh increases validation accuracy and decreases validation loss.

Model	Val Loss	Val Accuracy (%)
None $ ns = 0$	0.001153	95.66
LAE ns = 2	0.001747	94.21
VAE ns = 2	0.001770	93.99
LAE ns = 5	0.002130	92.91
VAE ns = 5	0.002134	92.61

Model	Accuracy	Epsilon	Epsilon	Epsilon	Epsilon
		= 0.01	= 0.1	= 0.2	= 0.3
None $\mid ns = 0$	95.66	94.69	70.85	13.18	0.16
LAE $ns = 2$	94.21	93.03	66.42	11.31	0.33
VAE $ns = 2$	93.99	92.66	63.40	11.16	0.35
LAE $ns = 5$	92.91	91.31	62.62	10.60	0.41
VAE $ns = 5$	92.61	90.83	60.89	10.32	0.41

Accuracy of different models for different values of epsilon

Model	Val Loss	$\epsilon = 0.01$	$\epsilon = 0.1$	$\epsilon = 0.2$	$\epsilon = 0.3$
None	0.001153	0.1702	0.8187	3.2136	6.6067
ns=0					
LAE	0.001747	0.2523	0.9044	2.9268	5.5999
ns=2					
VAE	0.001770	0.2630	0.9968	3.2381	6.1211
ns=2					
LAE	0.002130	0.3044	0.9958	3.0319	5.6184
ns=5					
VAE	0.002134	0.3114	1.0703	3.3443	6.1619
ns=5					

Validation loss adversarial attack

Conclusions

- ▶ Although LAE was better than VAE, the factor is not too big.
- ▶ Latent space learned by VAE has a better structure and control than LAE.
- ▶ Training method proposed has shown some positive results towards adversarial robustness, and these generative models can be paired up with the training of ML models.

Future Direction

- More tests towards the adversarial robustness of the proposed method can be done by using different datasets and training for longer epochs.
- ▶ This training idea can be extended and its usefulness can be measured on datasets having class imbalance problems, and data scarcity problems.

- $\blacktriangleright \ https://the a is ummer.com/latent-variable-models$
- ▶ https://abdulfatir.com/blog/2020/Langevin-Monte-Carlo/
- $\blacktriangleright https://www.youtube.com/watch?v=FMuvUZXMzKM$
- $\blacktriangleright https://arxiv.org/abs/2209.07036$

Thank You!

