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▶ One of the goals of unsupervised learning is to model the distribution of a
given dataset x ∼ D, i.e., model distribution p(x) such that p(x) ∼ pD. Here x
contains samples from unknown distributions D. These models are called
generative models.

▶ After we have learned the distribution, we can
▶ find probability of arbitrary data point x, p(x)
▶ sample point x from distribution, x ∼ p(x).

▶ This project focuses on one of the types of generative models called Latent
Variable models. These models compute the dataset’s exact or approximate
distribution functions.
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▶ We train these models using Maximum Likelihood estimation over some
training dataset.

θ̂ = argmin
θ

−
m∑
i=1

log pθ(x
i)

▶ To solve this optimization problem, gradient descent-based methods can be
applied for which the gradient of the objective function needs to be calculated.

▶ While calculating gradient expression we get

∇θ log pθ(x) =

∫
pθ(z|x)∇θ log pθ(x, z)dz

▶ We need to compute posterior p(z|x) to compute the gradient.
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▶ The posterior calculation is intractable due to the lack of an analytic solution
to the integral.

▶ We try to approximate the posterior distribution. There are two classes of
methods for this:
▶ Variational Inference approximate the posterior with a tractable distribution.

Ex. Variational Autoencoder (VAE)
▶ Markov Chain Monte Carlo(MCMC) provide sample based approximation

of posterior distribution. Ex. Langevin Autoencoder (LAE)

▶ This paper uses MCMC based method (Langevin Dynamics) to approximate
posterior.

▶ We want stationary distribution of Langevin Dynamics equation to be same as
target posterior distribution, enabling sampling from posterior by simulating
above equation.
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▶ Reading overview of generative models, assigned paper, relevant referenced
materials etc.

▶ Implemented paper code using PyTorch and Torch distributions

▶ Benchmarking was done between VAE and proposed LAE on their capability
to reconstruct given input for MNIST dataset.



Comments on Midterm Review 10

▶ Check generation capability comparing VAE and LAE latent space
interpolation results.

▶ Analyze the representation learning capability of VAE and LAE.



Addressing Comments during mid-term 11

▶ Model was trained for some longer epochs, and generation capability is
checked by sampling from latent space and reconstructing input. Along with
interpolation in latent space was performed.

▶ To analyze the representation learning capability of VAE and LAE, latent
space representation of input data was used to train a single-layer neural
network for both VAE and LAE, and accuracy was used as the measure.



Work Done after Midterm
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▶ Image generation through random sampling from Gaussian noise was done.

▶ Some comparison of the effect of different parameters in LAE that are not in
the paper.

▶ Analyze the representation learning capability of VAE and LAE was done

▶ A new training method is proposed and experiments were done regarding it.

▶ Adversarial robustness of the proposed method is compared.



Experiments by Team



Effect of Number of Steps in LAE 15

latent dim z=2, no mh, step size 0.001, batch size 512, early stopping patience 10
and loss BCE

Model Reconstruction Loss (MSE) Val Loss (BCE)

LAE| ns=2 0.00000743449 136.040208

LAE| ns=10 0.00000716265 132.89959

LAE| ns=50 0.00000729323 134.36413



Effect of MH in LAE 16

LAE z=2, num steps 2, step size 0.001, batch size 512, early stopping patience 10,
loss BCE

Model Reconstruction Loss (MSE) Val Loss (BCE)

LAE| no mh 0.00000743449 136.040208

LAE| mh 0.00000748080 136.238208



Learned encoded representations for classification 17

LAE num step = 2 and no mh step size 0.001, single layer with ReLU activation
and linear output activation

Model Train Loss Train Accuracy Val Loss Val Accuracy

VAE|z = 2 0.001352 0.0005407 0.001338 0.0005586

LAE|z = 2 0.00173053 0.0003460 0.00166865 0.00037973

VAE|z = 8 0.00074552 0.00071939 0.00074213 0.0007355

LAE|z = 8 0.00085344 0.00078394 0.00061837 0.00080696

VAE|z = 16 0.00082766 0.00069669 0.00080636 0.00072118

LAE|z = 16 0.00149354 0.00074028 0.00086874 0.00081385

▶ More number of steps leads to better accuracy.

▶ Increasing latent dimension also helps in both VAE and LAE.

▶ Using mh increases validation accuracy and decreases validation loss.



Testing classifier training with latent sampling method 18

LAE: num step = 2 and no mh step size 0.001, epochs = 10
Model Val Loss Val Accuracy (%)

None|ns = 0 0.001153 95.66

LAE|ns = 2 0.001747 94.21

VAE|ns = 2 0.001770 93.99

LAE|ns = 5 0.002130 92.91

VAE|ns = 5 0.002134 92.61



Adversarial Attacks on trained models 19

Model Accuracy Epsilon
= 0.01

Epsilon
= 0.1

Epsilon
= 0.2

Epsilon
= 0.3

None | ns = 0 95.66 94.69 70.85 13.18 0.16

LAE | ns = 2 94.21 93.03 66.42 11.31 0.33

VAE | ns = 2 93.99 92.66 63.40 11.16 0.35

LAE | ns = 5 92.91 91.31 62.62 10.60 0.41

VAE | ns = 5 92.61 90.83 60.89 10.32 0.41

Accuracy of different models for different values of epsilon



Adversarial Attacks on trained models 20

Model Val Loss ϵ = 0.01 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3

None |
ns=0

0.001153 0.1702 0.8187 3.2136 6.6067

LAE |
ns=2

0.001747 0.2523 0.9044 2.9268 5.5999

VAE |
ns=2

0.001770 0.2630 0.9968 3.2381 6.1211

LAE |
ns=5

0.002130 0.3044 0.9958 3.0319 5.6184

VAE |
ns=5

0.002134 0.3114 1.0703 3.3443 6.1619

Validation loss adversarial attack
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▶ Although LAE was better than VAE, the factor is not too big.

▶ Latent space learned by VAE has a better structure and control than LAE.

▶ Training method proposed has shown some positive results towards
adversarial robustness, and these generative models can be paired up with the
training of ML models.



Future Direction
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▶ More tests towards the adversarial robustness of the proposed method can be
done by using different datasets and training for longer epochs.

▶ This training idea can be extended and its usefulness can be measured on
datasets having class imbalance problems, and data scarcity problems.
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