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Introduction



Motivation of the Study 4

▶ In Unsupervised learning, the main task is to learn useful representations from
unlabeled data.

▶ These tasks include finding the underlying structure or interesting patterns,
clustering, statistical correlations, and generating data.

▶ It is harder than a supervised learning task as instead of just predicting the
target label, now the model has to learn to describe the input itself.

▶ Supervised Learning requires a large labeled dataset to generalize better, but
obtaining a large labeled dataset is costly

▶ An unsupervised that explains data well can be used for semi-supervised
learning with the small labeled dataset.



Background 5

▶ One of the goals of unsupervised learning is to model the distribution of a
given dataset x ∼ D, i.e., model distribution p(x) such that p(x) ∼ pD. Here x
contains samples from unknown distributions D. These models are called
generative models.

▶ After we have learned the distribution we can
▶ find probability of arbitary data point x, p(x)
▶ sample point x from distribution, x ∼ p(x).

▶ To generate those data points, the model has to learn to analyze and
understand the essence of the dataset. This ability makes these models to be
used as learning representations from data.
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Applications

▶ Representation Learning

▶ Mapping of one domain into another ex. Text to Speech, Text to Image etc.

▶ Conditional Synthesis ex. generating music, image based on text prompt etc.

▶ Generate novel data



Background 7

Training a generative model

▶ Recall, the goal is to model pD using samples (x1, x2, ...xm)

▶ One approach to learn this distribution is by using function approximation.
Learn θ such that pθ(x) ≈ pD(x)

▶ Optimal value of θ can be find using Maximum Likelihood estimation. Given
dataset x find θ that maximizes probability of data.

argmax
θ

pθ(x)

argmax
θ

log pθ(x)

argmin
θ

− log pθ(x)



Background 8

Types of Generative models

▶ Implicit Density Models maps the dataset’s underlying distribution
without explicitly computing it. Ex. GAN

▶ Explicit Density Models computes the dataset’s exact or approximate
distribution functions. These models are generally referred to as Latent
Variable Models. Ex. VAE, LAE

▶ Autoregressive Models model 1-dimensional conditional distribution.
p(x) =

∏D
i=1 p(xi|x1, x2, ..., xi−1). Ex. GPT (generative pre-trained

transformers).



Background 9

Types of Generative models

▶ Implicit Density Models maps the dataset’s underlying distribution
without explicitly computing it. Ex. GAN

▶ Explicit Density Models computes the dataset’s exact or approximate
distribution functions. These models are generally referred to as Latent
Variable Models. Ex. VAE, LAE

▶ Autoregressive Models model 1-dimensional conditional distribution.
p(x) =

∏D
i=1 p(xi|x1, x2, ..., xi−1). Ex. GPT (generative pre-trained

transformers).

We will focus only on Latent Variable models in this presentation.



Latent Variable Models 10

▶ We know that given dataset x ∼ D, the generative model aims to model
distribution p(x).

▶ Idea of the latent variable model is instead of modeling p(x) directly, an
unobserved/hidden variable called latent variable is used, and we define a
conditional distribution p(x|z) for data also known as likelihood.

▶ The idea of latent variable is that in data can be represented using simple and
lower dimensional representations, we hope that latent variables will try to
find those hidden representations.

▶ The latent variable z can be continuous or discrete based on the models. Ex.
VAE, LAE uses z as continuous while models like Vector Quantized VAE
(VQ-VAE) assume z as discrete.

▶ We also introduce a prior distribution p(z) over the latent variables, and
compute the joint distribution over observed and latent variables as p(x, z)



Latent Variable Models 11

Evaluate Likelihood
Calculate likelihood of a sample

p(x) =
∑
z

p(z)p(x|z)

Sample (Generation)

Generate new data points, given prior distribution of latent
variable p(z)

z ∼ p(z)

x ∼ p(x|z)

z

x



Latent Variable Models 12

Data Representation (Inference)

Representing a sample in lower dimension.

x 7→ z

Inference is finding latent variable z given data
point x and is formulated by posterior
distribution p(z|x)

x ∼ p(x)

z ∼ p(z|x)

z

x

inferencegeneration



Latent Variable Models 13

▶ Using Bayes Rule we can connect inference and generation as,

p(z|x) = p(x|z)p(z)
p(x)

=
p(x, z)∫
p(x, z)dz

▶ p(x|z)p(z) = p(x, z) = p(z|x)p(x)



Training Latent Variable Models 14

▶ Training of model is done by Maximum Likelihood estimation.

θ̂ = argmin
θ

−
m∑
i=1

log pθ(x
i)

▶ This is a standard optimization problem and can be solved using gradient
descent based algorithms. To apply gradient descent, gradients of objective
are required with respect to model parameters.



Training Latent Variable Models 15

▶ Let’s compute gradient for a single data point x

∇θ log pθ(x) =
∇θpθ(x)

pθ(x)
=

∫
∇θpθ(x, z)dz

pθ(x)

∇θ log pθ(x) =

∫
pθ(x, z)∇θ log pθ(x, z)dz

pθ(x)

using, ∇θ log pθ(x) =
∇θpθ(x)
pθ(x)

∇θ log pθ(x) =

∫
pθ(z|x)∇θ log pθ(x, z)dz

▶ We need to compute posterior p(z|x) to compute gradient.



Training Latent Variable Models 16

▶ The posterior calculation is intractable due to the lack of an analytic solution
to the integral.

▶ We try to approximate the posterior distribution, there are two classes of
methods for this:
▶ Variational Inference approximate the posterior with a tractable distribution.

Ex. Variational Autoencoder
▶ Markov Chain Monte Carlo(MCMC) provide sample based approximation

of posterior distribution. It does it by constructing a markov chain in such a way
that its stationary distribution is similar to posterior distribution. Ex. Langevin
Autoencoder



Training Latent Variable Models 17

▶ The posterior calculation is intractable due to the lack of an analytic solution
to the integral.

▶ We try to approximate the posterior distribution, there are two classes of
methods for this:
▶ Variational Inference approximate the posterior with a tractable distribution.

Ex. Variational Autoencoder (VAE)
▶ Markov Chain Monte Carlo(MCMC) provide sample based approximation

of posterior distribution. Ex. Langevin Autoencoder (LAE)

This paper uses MCMC based method (Langevin Dynamics) to approximate
posterior.



Langevin Dynamics Autoencoder



Langevin Dynamics 19

▶ Langevin Monte Carlo is a class of Markov Chain Monte Carlo (MCMC)
algorithm that generate samples from a probability distribution of interest by
simulating the Langevin Equation, which is inspired from physics.

dz = −∇zU(x, z; θ)dt+
√
2β−1dB

where U is some potential/energy function in our case its a loss function and√
2β−1dB is noise term, B is brownian motion.

▶ The above stochastic differential(SDE) equation has a stationary distribution
(SD), if we somehow make posterior distribution same as SD of above SDE
then we can sample points from posterior by simulating above equation.

Claim: This stocastic differential equation has pβ(z|x; θ) ∝ exp(−βU(x, z; θ))



Langevin Dynamics 20

▶ By setting β = 1 we have, p(z|x; θ) ∝ exp(−U(x, z; θ))

exp(−U(x, z; θ)) = p(z|x; θ)p(x)

▶ Therefore, by setting U(x, z; θ) = − log p(z|x; θ)p(x) we can obtain posterior
p(z|x; θ) as stationary distribution.

U(x, z; θ) = − log p(x, z; θ)

▶ We are now interested in simulating the following SDE to sample from its
steady state distribution p(z|x; θ)

dz = −∇z log p(x, z; θ)dt+
√
2dB



Langevin Dynamics 21

▶ We can obtain samples from the posterior by simulating the above SDE using
the Euler–Maruyama method.

zt+η − zt = −η∇z log p(x, z; θ) +
√
2(Bt+η −Bt)

here (Bt+η −Bt) becomes, (Bt+η −Bt) ∼ N(0, η)

zt+η = zt − η∇z log p(x, z; θ) +
√
2(Bt+η −Bt)

zt+1 ∼ q(zt+1|zt)

q(z′|z) = N (z − η∇zU(x, z; θ), 2ηI)



Estimating gradients 22

▶ After obtaining samples the gradient ∇θ log pθ(x, z) is approximated as∫
pθ(z|x)∇θ log pθ(x, z)dz = Epθ(z|x)[∇θ log pθ(x, z)] ≈

1

T

T∑
t=1

∇θ log pθ(x, z)

▶ For N samples gradients are calculated as

1

N

N∑
i=1

Epθ(zi|xi)[∇θ log pθ(x
i, zi)] ≈ 1

N

N∑
i=1

1

T

T∑
t=1

∇θ log pθ(x
i, zi)
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Experiments by Author
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▶ Author run multiple experiments on different dataset, to demonstrate that
LAE can properly obtain samples from target distributions and can
reconstruct input.
▶ Toy Datasets (2D normal distributions with some defined mean and variance)
▶ MNIST
▶ CIFAR10
▶ CelebA
▶ SVHN

▶ The experiments are performed on Computing Nodes of ABCI, each of which
has four NVIDIA V100 GPU accelerators, two Intel Xeon Gold 6148, one
NVMe SSD, 384GiB memory, two InfiniBand EDR ports (100Gbps each).
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For image generation task author used ELBO score, using different seed values and
averging ELBO scores.

Lower is Better



Experiments by Team
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Experimental Setup

▶ For testing Linux Machine CPU: Intel I3, GPU: Geforce 940MX, 12GB RAM.

▶ For longer training session Kaggle was used, GPU: P400, 16GB RAM.

Dataset

▶ MNIST

▶ CIFAR10

Programming Setup

▶ PyTorch

▶ PyTorch distributions

▶ Tensorboard (logging)



Experiments by Team 30

▶ Author’s code was getting some error so code is written from scratch, the
written code also allow to use generic loss functions and models.

▶ Kaggle notebook was used as it provide 30 hours of GPU time per week and
background code run for 12 hours.

▶ Default configurations and parameters used by authors were used.

▶ Benchmark using MSE reconstruction loss.



Experiments Results 31

MNIST CIFAR10

VAE 0.0717 ± 0.002 0.0853 ± 0.001

LAE 0.0718 ± 0.0002 0.0823 ± 0.006



Further Investigations 32

▶ Analyze the representation learning capability of VAE and LAE.

▶ Integrate much more powerful encoder and decoder and check generation
capability comparing VAE and LAE latent space interpolation results.
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